Defining the Business Problem

HappyMoonVC is a Venture Capital (VC) firm.

Venture Capital is a class of investment fund focused in growth capital for medium sized companies which already possess a portfolio of customers as well as reveneu, but which still need to gain scale. VCs invest in Startups and young companies with high growth potential.

HappyMoonVC has already invested in a new promissing Startup called GoInRail.

GoInRail is an innovative transportation method which utilized jet propulsion technology to launch a drone-lie vehicle over rails (which maintain the drone charged with electricity), and thus transport people in high speed!

Now HappyMoonVC is analyzing an complementary business, an e-commerce platform capable of supplying goods for GoInRail's clients. The startup offers a touch-screen monitor inside the GoInRail which allows travelers to purchase while onboard, with the option to retrieve the goods in the station where they exit or to receive the goods at home.

(If you find this too futurist, know that it already exists in Japan's metro!)

To decide if the investment is worth HappyMoonVC must predict the sales volumes.

Load Packages

In [0]:

!pip install pmdarima

Collecting pmdarima

  Downloading https://files.pythonhosted.org/packages/ff/07/7c173cc4fee44ebd62ddf03b3de84c4f151ec23facdf16baf58b8d02784c/pmdarima-1.6.0-cp36-cp36m-manylinux1_x86_64.whl (1.5MB)

     |████████████████████████████████| 1.5MB 4.8MB/s

Requirement already satisfied: Cython>=0.29 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (0.29.17)

Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (1.18.4)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (0.14.1)

Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (0.22.2.post1)

Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (1.0.3)

Requirement already satisfied: statsmodels>=0.10.2 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (0.10.2)

Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (1.4.1)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.6/dist-packages (from pmdarima) (1.24.3)

Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.19->pmdarima) (2.8.1)

Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.19->pmdarima) (2018.9)

Requirement already satisfied: patsy>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from statsmodels>=0.10.2->pmdarima) (0.5.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas>=0.19->pmdarima) (1.12.0)

Installing collected packages: pmdarima

Successfully installed pmdarima-1.6.0

In [0]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.

import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import numpy as np

import pandas as pd

import itertools

from pandas import Series

import holidays

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

import plotly as py

import plotly.express as px

import plotly.graph_objs as go

from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot

 

# Predictive modeling imports

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

import pmdarima as pm

import scipy

import scipy.stats as scs

from statsmodels.graphics import tsaplots

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

from statsmodels.tsa.arima_model import ARMA

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.stats.stattools import jarque_bera

import fbprophet

from fbprophet import Prophet

 

# Metrics and model performance imports

import math

from math import sqrt

import sklearn

from sklearn.metrics import mean_squared_error

 

# Graphics formatting imports

m.rcParams['axes.labelsize'] = 14

m.rcParams['xtick.labelsize'] = 12

m.rcParams['ytick.labelsize'] = 12

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 20,10

matplotlib.style.use('ggplot')

%matplotlib inline

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/tableau_superstore_sales.csv')

In [0]:

# Shape

data.shape

Out[0]:

(9994, 21)

In [0]:

# Columns

data.columns

Out[0]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [0]:

# Visualizing data

data.head()

Out[0]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

State

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

California

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

In [0]:

# Statistic summaries

data.describe()

Out[0]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [0]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [0]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [0]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [0]:

# Checking

data.columns

Out[0]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [0]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'Second Class', 'First Class', 'Same Day', 'Standard Class'}

segment {'Corporate', 'Home Office', 'Consumer'}

country {'United States'}

region {'Central', 'East', 'South', 'West'}

category {'Technology', 'Furniture', 'Office Supplies'}

sub_category {'Fasteners', 'Tables', 'Art', 'Phones', 'Bookcases', 'Machines', 'Copiers', 'Labels', 'Accessories', 'Supplies', 'Appliances', 'Envelopes', 'Paper', 'Furnishings', 'Binders', 'Storage', 'Chairs'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [0]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

In [0]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [0]:

# Checking dataset

ts_technology

Out[0]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [0]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [0]:

# Visualizing the series

ts_technology

Out[0]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

In [0]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [0]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [0]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

Adjusting the index type to DateTimeIndex (which characterizes a time series), so that it's possible to aggregate monthly and obtain the mean monthly sales.

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.base.Index

In [0]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.datetimes.DatetimeIndex

In [0]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [0]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[0]:

pandas.core.series.Series

In [0]:

# Checking the data

sales_technology_monthly_mean

Out[0]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

Decomposing the series to analyze its componentes.

In [0]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [0]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [0]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Function to Calculate Accuracy

In [0]:

# Function

def performance(y_true, y_pred):

    mse = ((y_pred - y_true) ** 2).mean()

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    return( print('The prediction MSE is {}'.format(round(mse, 2))+

                  '\nThe prediction RMSE is {}'.format(round(np.sqrt(mse), 2))+

                  '\nThe prediction MAPE is {}'.format(round(mape, 2))))

ARMA Model

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model.ARMA.html

In [0]:

# Seeking the best values for the 'p' and 'q' parameters

# The goal is the lowest possible AIC

 

# Initial values

best_aic = np.inf

best_order = None

best_model = None

 

# Values to be used in seeking the best combination, order = (i, j)

test_order_values = [1, 2, 3, 4, 5]

 

# Loop

for i in test_order_values:

    for j in test_order_values:

        try:

            tmp_mdl = ARMA(trainset, order = (i, j)).fit(disp = False)

            tmp_aic = tmp_mdl.aic

            if tmp_aic < best_aic:

                best_aic = tmp_aic

                best_order = (i, j)

                best_model = tmp_mdl

        except: continue

 

# Print

print('\nBest AIC Score: %6.2f | order: %s'%(best_aic, best_order))

print('\nBest Model:', best_model.summary())

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:695: RuntimeWarning:

 

divide by zero encountered in log

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/numdiff.py:243: RuntimeWarning:

 

invalid value encountered in subtract

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/numdiff.py:243: RuntimeWarning:

 

invalid value encountered in multiply

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:668: RuntimeWarning:

 

invalid value encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:669: RuntimeWarning:

 

invalid value encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning:

 

Maximum Likelihood optimization failed to converge. Check mle_retvals

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:693: RuntimeWarning:

 

invalid value encountered in double_scalars

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:668: RuntimeWarning:

 

overflow encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:668: RuntimeWarning:

 

invalid value encountered in true_divide

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:669: RuntimeWarning:

 

overflow encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:669: RuntimeWarning:

 

invalid value encountered in true_divide

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:695: RuntimeWarning:

 

divide by zero encountered in true_divide

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning:

 

Maximum Likelihood optimization failed to converge. Check mle_retvals

 

Best AIC Score: 552.92 | order: (3, 1)

 

Best Model:                               ARMA Model Results                             

==============================================================================

Dep. Variable:                  sales   No. Observations:                   36

Model:                     ARMA(3, 1)   Log Likelihood                -270.459

Method:                       css-mle   S.D. of innovations            442.123

Date:                Sat, 09 May 2020   AIC                            552.918

Time:                        17:27:13   BIC                            562.420

Sample:                    01-01-2014   HQIC                           556.235

                         - 12-01-2016                                        

===============================================================================

                  coef    std err          z      P>|z|      [0.025      0.975]

-------------------------------------------------------------------------------

const         939.5686     63.228     14.860      0.000     815.644    1063.493

ar.L1.sales    -0.3149      0.770     -0.409      0.685      -1.824       1.194

ar.L2.sales    -0.2023      0.207     -0.979      0.335      -0.607       0.203

ar.L3.sales     0.1073      0.260      0.413      0.682      -0.402       0.616

ma.L1.sales     0.1991      0.759      0.262      0.795      -1.289       1.687

                                    Roots                                   

=============================================================================

                  Real          Imaginary           Modulus         Frequency

-----------------------------------------------------------------------------

AR.1           -0.8027           -1.4232j            1.6340           -0.3317

AR.2           -0.8027           +1.4232j            1.6340            0.3317

AR.3            3.4918           -0.0000j            3.4918           -0.0000

MA.1           -5.0226           +0.0000j            5.0226            0.5000

-----------------------------------------------------------------------------

The warning messages above indicate taht for some order combinations (i, j) the model could not converge. The combination with the best performance was: order = (3, 1)

In [0]:

# Create model

arma_model = ARMA(trainset, order = (3, 1))

In [0]:

# Train model

arma_model_fit = arma_model.fit(method = 'mle', disp = False)

In [0]:

# Model summary

arma_model_fit.summary()

Out[0]:

ARMA Model Results

Dep. Variable:

sales

No. Observations:

36

Model:

ARMA(3, 1)

Log Likelihood

-270.459

Method:

mle

S.D. of innovations

442.123

Date:

Sat, 09 May 2020

AIC

552.918

Time:

17:27:13

BIC

562.420

Sample:

01-01-2014

HQIC

556.235

 

- 12-01-2016

 

 

 

 

coef

std err

z

P>|z|

[0.025

0.975]

const

939.5857

63.229

14.860

0.000

815.660

1063.512

ar.L1.sales

-0.3149

0.770

-0.409

0.685

-1.824

1.194

ar.L2.sales

-0.2023

0.207

-0.979

0.335

-0.607

0.203

ar.L3.sales

0.1073

0.260

0.413

0.682

-0.402

0.616

ma.L1.sales

0.1991

0.759

0.262

0.795

-1.289

1.687

 

Roots

 

Real

Imaginary

Modulus

Frequency

AR.1

-0.8027

-1.4232j

1.6340

-0.3317

AR.2

-0.8027

+1.4232j

1.6340

0.3317

AR.3

3.4917

-0.0000j

3.4917

-0.0000

MA.1

-5.0228

+0.0000j

5.0228

0.5000

Evaluating based on the AIC (Akaike Information Criterion) metric. The lower the value the better the model performance.

In [0]:

# Model predictions

arma_predict = arma_model_fit.predict(start = pd.to_datetime('2017-01-01'),

                                       end = pd.to_datetime('2017-12-01'),

                                       dynamic = False)

In [0]:

# Plotting predictions

ax = sales_technology_monthly_mean.plot(label = 'Observed Values', color = '#3574BF')

rcParams['figure.figsize'] = 18, 8

arma_predict.plot(ax = ax, label = 'ARMA (3,1) Predictions', alpha = 0.7, color = 'red')

plt.title('Sales Predictions with ARMA Model')

plt.xlabel('Data')

plt.ylabel('Technology Category Sales')

plt.legend()

plt.show()

In [0]:

# Evaluating performance with test data

arma_results = performance(testset, arma_predict)

arma_results

The prediction MSE is 168192.9

The prediction RMSE is 410.11

The prediction MAPE is 28.4

Creating a function to plot various diagnostic metrics which can be used to assess the model

In [0]:

# Function

def tsplot(y, lags = None, figsize = (12, 8), style = 'bmh'):

 

    # If the series isn't from type pd.Series, convert it

    if not isinstance(y, pd.Series):

        y = pd.Series(y)

 

    # Creating plots

    with plt.style.context(style):   

        fig = plt.figure(figsize = figsize)

        layout = (3, 2)

        ts_ax = plt.subplot2grid(layout, (0, 0), colspan = 2)

        acf_ax = plt.subplot2grid(layout, (1, 0))

        pacf_ax = plt.subplot2grid(layout, (1, 1))

        qq_ax = plt.subplot2grid(layout, (2, 0))

        pp_ax = plt.subplot2grid(layout, (2, 1))

       

        y.plot(ax = ts_ax)

        ts_ax.set_title('Plots for Time Series Analysis')

        smt.graphics.plot_acf(y, lags = lags, ax = acf_ax, alpha = 0.05)

        smt.graphics.plot_pacf(y, lags = lags, ax = pacf_ax, alpha = 0.05)

        sm.qqplot(y, line = 's', ax = qq_ax)

        qq_ax.set_title('QQ Plot')       

        scs.probplot(y, sparams = (y.mean(), y.std()), plot = pp_ax)

 

        plt.tight_layout()

    return

In [0]:

# Running the functions with train data

tsplot(trainset, lags = 30)

/usr/local/lib/python3.6/dist-packages/statsmodels/regression/linear_model.py:1358: RuntimeWarning:

 

invalid value encountered in sqrt

 

The model's rediduals must be normally distributed. Checking with the jarque_bera test.

In [0]:

# Test

score, pvalue, _, _ = jarque_bera(arma_model_fit.resid)

 

# Result

if pvalue < 0.05:

    print ('\nThe residuals might not be normally distributed.')

else:

    print ('\nThe residuals appear to be normally distributed.') 

The residuals appear to be normally distributed.

In [0]:

# Ljung-Box test

ljungbox_test = sms.diagnostic.acorr_ljungbox(arma_model_fit.resid, lags = [30], boxpierce = False)

print('P-value =', ljungbox_test[1])

P-value = [0.9105266]

The p-value is greater than 0.05, which indicates that the residual are independent with a 95% confidence, thefore an (3, 1) ARMA model has a good fit.

ARIMA Model

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

In [0]:

# Function to evaluate an ARIMA model

def evaluate_arima_model(X, arima_order):

   

    # Prepare data

    train_size = int(len(X) * 0.75)

    train, test = X[0:train_size], X[train_size:]

    history = [x for x in train]

   

    # predict

    predictions = list()

   

    # Loop

    for t in range(len(test)):

        model = ARIMA(history, order = arima_order)

        model_fit = model.fit(method = 'mle', disp = 0)

        yhat = model_fit.forecast()[0]

        predictions.append(yhat)

        history.append(test[t])

 

    # Calculate model error

    error = mean_squared_error(test, predictions)

    return error

In [0]:

# Finding the optimal combination of 'p', 'd' and 'q' values for the ARIMA model

def find_best_arima(dataset, p_values, d_values, q_values):

   

    # Adjusting the data type

    dataset = dataset.astype('float32')

   

    # Defining control variables

    best_score, best_cfg = float("inf"), None

   

    # Loop through 'p d q' values

    for p in p_values:

        for d in d_values:

            for q in q_values:

                order = (p,d,q)

                try:

                    mse = evaluate_arima_model(dataset, order)

                    if mse < best_score:

                        best_score, best_cfg = mse, order

                    print('ARIMA%s MSE = %.3f' % (order, mse))

                except:

                    continue

 

    print('\nBest Model ARIMA%s MSE = %.3f' % (best_cfg, best_score))

In [0]:

# Set values to loop through

p_values = [0, 2, 4, 6]

d_values = [0, 2, 4, 6]

q_values = [0, 2, 4, 6] 

In [0]:

# Applying function to seek the best values for 'p d q'

find_best_arima(sales_technology_monthly_mean.values, p_values, d_values, q_values)

ARIMA(0, 0, 0) MSE = 174155.275

ARIMA(0, 0, 2) MSE = 191647.549

ARIMA(0, 0, 4) MSE = 194995.823

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

ARIMA(0, 0, 6) MSE = 173741.615

ARIMA(0, 2, 0) MSE = 793878.683

ARIMA(2, 0, 0) MSE = 194636.248

ARIMA(2, 2, 0) MSE = 299872.253

ARIMA(4, 0, 0) MSE = 188135.157

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

ARIMA(4, 0, 2) MSE = 201385.415

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:668: RuntimeWarning:

 

overflow encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:668: RuntimeWarning:

 

invalid value encountered in true_divide

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:669: RuntimeWarning:

 

overflow encountered in exp

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/tsatools.py:669: RuntimeWarning:

 

invalid value encountered in true_divide

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

ARIMA(4, 0, 4) MSE = 205003.913

ARIMA(4, 2, 0) MSE = 299179.994

ARIMA(6, 0, 0) MSE = 204155.758

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

ARIMA(6, 0, 2) MSE = 183004.507

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

ARIMA(6, 0, 4) MSE = 140567.260

 

Best Model ARIMA(6, 0, 4) MSE = 140567.260

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:492: HessianInversionWarning:

 

Inverting hessian failed, no bse or cov_params available

 

The warning messages above indicate that some of the combinations cannot create a model which converges.

According to the result the optimal values are: oreder = (6, 0, 4).

In [0]:

# Create model

arima_model = ARIMA(trainset, order = (6,0,4))

In [0]:

# Train model

arima_model_fit = arima_model.fit(method = 'mle', disp = False)

In [0]:

# Model summary

arima_model_fit.summary()

Out[0]:

ARMA Model Results

Dep. Variable:

sales

No. Observations:

36

Model:

ARMA(6, 4)

Log Likelihood

-268.327

Method:

mle

S.D. of innovations

383.392

Date:

Sat, 09 May 2020

AIC

560.655

Time:

17:29:10

BIC

579.657

Sample:

01-01-2014

HQIC

567.287

 

- 12-01-2016

 

 

 

 

coef

std err

z

P>|z|

[0.025

0.975]

const

939.1474

64.124

14.646

0.000

813.467

1064.828

ar.L1.sales

-0.6945

0.216

-3.213

0.004

-1.118

-0.271

ar.L2.sales

-0.1558

0.316

-0.493

0.627

-0.775

0.464

ar.L3.sales

-0.6355

0.308

-2.062

0.050

-1.240

-0.031

ar.L4.sales

-0.7980

0.290

-2.750

0.011

-1.367

-0.229

ar.L5.sales

-0.1525

0.275

-0.554

0.584

-0.692

0.387

ar.L6.sales

0.1194

0.203

0.589

0.561

-0.278

0.516

ma.L1.sales

0.6915

0.279

2.477

0.020

0.144

1.239

ma.L2.sales

-0.1103

0.264

-0.418

0.680

-0.628

0.407

ma.L3.sales

0.6915

0.212

3.268

0.003

0.277

1.106

ma.L4.sales

1.0000

0.272

3.672

0.001

0.466

1.534

 

Roots

 

Real

Imaginary

Modulus

Frequency

AR.1

0.5448

-0.8690j

1.0257

-0.1609

AR.2

0.5448

+0.8690j

1.0257

0.1609

AR.3

-1.0291

-0.7452j

1.2705

-0.4003

AR.4

-1.0291

+0.7452j

1.2705

0.4003

AR.5

-1.3659

-0.0000j

1.3659

-0.5000

AR.6

3.6119

-0.0000j

3.6119

-0.0000

MA.1

0.5738

-0.8190j

1.0000

-0.1527

MA.2

0.5738

+0.8190j

1.0000

0.1527

MA.3

-0.9195

-0.3931j

1.0000

-0.4357

MA.4

-0.9195

+0.3931j

1.0000

0.4357

Evaluating based on the AIC (Akaike Information Criterion) metric. The lower the value the better the model performance.

In [0]:

# Model predictions

arima_predict = arima_model_fit.predict(start = pd.to_datetime('2017-01-01'),

                                         end = pd.to_datetime('2017-12-01'),

                                         dynamic = False)

In [0]:

# Plotting predictions

ax = sales_technology_monthly_mean.plot(label = 'Observed Values', color = '#3574BF')

rcParams['figure.figsize'] = 14, 7

arima_predict.plot(ax = ax, label = 'ARIMA (6,0,4) Predictions', alpha = 0.8, color = 'red')

plt.title('Sales Predictions with ARIMA Model')

plt.xlabel('Data')

plt.ylabel('Technology Category Sales')

plt.legend()

plt.show()

In [0]:

# Calculating performance

arima_results = performance(testset, arima_predict)

arima_results

The prediction MSE is 120137.97

The prediction RMSE is 346.61

The prediction MAPE is 20.1

The model's rediduals must be normally distributed. Checking with the jarque_bera test..

In [0]:

# Test

score, pvalue, _, _ = jarque_bera(arima_model_fit.resid)

 

# Result

if pvalue < 0.05:

    print ('\nThe residuals might not be normally distributed.')

else:

    print ('\nThe residuals appear to be normally distributed.')

The residuals appear to be normally distributed.

In [0]:

# Ljung-Box test

ljungbox_test = sms.diagnostic.acorr_ljungbox(arima_model_fit.resid, lags = [30], boxpierce = False)

print('P-value =', ljungbox_test[1])

P-value = [0.92902243]

The p-value is greater than 0.05, which indicates that the residual are independent with a 95% confidence, thefore an (6,0,2) ARIMA model has a good fit.

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA Model

Grid Search Method 1 - auto_arima

Using an Auto-Arima model to find the best order hiperparameters for the lowest AIC score.

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

In [0]:

# Searching for the ideal model order

# Using pm.auto_arima method to apply a Grid Search and retrieve the best model

sarima_hiperparameters = pm.auto_arima(trainset,

                          seasonal = True,

                          m = 12,

                          d = 0,

                          D = 1,

                          max_p = 2,

                          max_q = 2,

                          trace = True,

                          error_action = 'ignore',

                          suppress_warnings = True)

Performing stepwise search to minimize aic

Fit ARIMA(2,0,2)x(1,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(0,1,0,12) [intercept=True]; AIC=380.244, BIC=382.600, Time=0.024 seconds

Fit ARIMA(1,0,0)x(1,1,0,12) [intercept=True]; AIC=378.184, BIC=382.897, Time=0.495 seconds

Fit ARIMA(0,0,1)x(0,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(0,1,0,12) [intercept=False]; AIC=378.609, BIC=379.787, Time=0.015 seconds

Fit ARIMA(1,0,0)x(0,1,0,12) [intercept=True]; AIC=382.218, BIC=385.753, Time=0.068 seconds

Fit ARIMA(1,0,0)x(2,1,0,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(1,0,0)x(1,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(1,0,0)x(0,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(1,0,0)x(2,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(1,1,0,12) [intercept=True]; AIC=377.369, BIC=380.903, Time=0.331 seconds

Fit ARIMA(0,0,0)x(2,1,0,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(1,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(0,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,0)x(2,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,1)x(1,1,0,12) [intercept=True]; AIC=376.797, BIC=381.509, Time=0.255 seconds

Fit ARIMA(0,0,1)x(0,1,0,12) [intercept=True]; AIC=382.184, BIC=385.718, Time=0.145 seconds

Fit ARIMA(0,0,1)x(2,1,0,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,1)x(1,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(0,0,1)x(2,1,1,12) [intercept=True]; AIC=nan, BIC=nan, Time=nan seconds

Fit ARIMA(1,0,1)x(1,1,0,12) [intercept=True]; AIC=378.567, BIC=384.458, Time=0.472 seconds

Fit ARIMA(0,0,2)x(1,1,0,12) [intercept=True]; AIC=378.319, BIC=384.209, Time=0.330 seconds

Fit ARIMA(1,0,2)x(1,1,0,12) [intercept=True]; AIC=379.996, BIC=387.065, Time=0.518 seconds

Total fit time: 2.702 seconds

Analyzing the results from the Stepwise Grid Search the best model is:

Fit ARIMA(0,0,1)x(1,1,0,12) [intercept=True]; AIC=376.797, BIC=381.509, Time=0.225 seconds

In [0]:

# Print summary of the model with best parameters

print(sarima_hiperparameters.summary())

                                 Statespace Model Results                                

==========================================================================================

Dep. Variable:                                  y   No. Observations:                   36

Model:             SARIMAX(0, 0, 1)x(1, 1, 0, 12)   Log Likelihood                -184.398

Date:                            Sat, 09 May 2020   AIC                            376.797

Time:                                    17:29:14   BIC                            381.509

Sample:                                         0   HQIC                           378.047

                                             - 36                                        

Covariance Type:                              opg                                        

==============================================================================

                 coef    std err          z      P>|z|      [0.025      0.975]

------------------------------------------------------------------------------

intercept    163.5162     74.251      2.202      0.028      17.986     309.046

ma.L1         -0.4516      0.232     -1.948      0.051      -0.906       0.003

ar.S.L12      -0.7046      0.146     -4.812      0.000      -0.992      -0.418

sigma2      2.449e+05   1.09e+05      2.253      0.024    3.19e+04    4.58e+05

===================================================================================

Ljung-Box (Q):                         nan   Jarque-Bera (JB):                 0.65

Prob(Q):                               nan   Prob(JB):                         0.72

Heteroskedasticity (H):               2.44   Skew:                             0.13

Prob(H) (two-sided):                  0.23   Kurtosis:                         2.24

===================================================================================

 

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html

In [0]:

# Create SARIMA model

sarima_model_v1 = sm.tsa.statespace.SARIMAX(trainset,

                                             order = (0, 0, 1),

                                             seasonal_order = (1, 1, 0, 12),

                                             enforce_stationarity = False,

                                             enforce_invertibility = False)

In [0]:

# Training (fit) model

sarima_model_v1_fit = sarima_model_v1.fit()

In [0]:

# Model summary

print(sarima_model_v1_fit.summary())

                                 Statespace Model Results                                

==========================================================================================

Dep. Variable:                              sales   No. Observations:                   36

Model:             SARIMAX(0, 0, 1)x(1, 1, 0, 12)   Log Likelihood                 -93.817

Date:                            Sat, 09 May 2020   AIC                            193.633

Time:                                    17:29:14   BIC                            195.088

Sample:                                01-01-2014   HQIC                           193.095

                                     - 12-01-2016                                        

Covariance Type:                              opg                                        

==============================================================================

                 coef    std err          z      P>|z|      [0.025      0.975]

------------------------------------------------------------------------------

ma.L1         -0.0756      0.524     -0.144      0.885      -1.103       0.952

ar.S.L12      -0.4330      0.602     -0.719      0.472      -1.613       0.747

sigma2      3.385e+05   1.55e+05      2.183      0.029    3.46e+04    6.42e+05

===================================================================================

Ljung-Box (Q):                         nan   Jarque-Bera (JB):                 0.93

Prob(Q):                               nan   Prob(JB):                         0.63

Heteroskedasticity (H):               2.43   Skew:                             0.55

Prob(H) (two-sided):                  0.41   Kurtosis:                         2.20

===================================================================================

 

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [0]:

# Model diagnostic

sarima_model_v1_fit.plot_diagnostics(figsize = (16, 8))

plt.show()

In [0]:

# Predictions

sarima_predict_1 = sarima_model_v1_fit.get_prediction(start = pd.to_datetime('2017-01-01'),

                                                       end = pd.to_datetime('2017-12-01'),

                                                       dynamic = False)

In [0]:

# Confidence interval

sarima_predict_conf_1 = sarima_predict_1.conf_int()

sarima_predict_conf_1

Out[0]:

 

lower sales

upper sales

2017-01-01

-493.735604

1786.942536

2017-02-01

-261.853176

2025.326730

2017-03-01

-251.144557

2036.035349

2017-04-01

-344.908949

1942.270957

2017-05-01

124.722615

2411.902521

2017-06-01

-377.648568

1909.531338

2017-07-01

-373.997870

1913.182036

2017-08-01

-389.207602

1897.972304

2017-09-01

-83.129229

2204.050677

2017-10-01

231.352910

2518.532816

2017-11-01

-78.585395

2208.594511

2017-12-01

108.033393

2395.213299

In [0]:

# Plot observed values

ax = sales_technology_monthly_mean.plot(label = 'Observed Values', color = '#2574BF')

 

# Plot predicted values

sarima_predict_1.predicted_mean.plot(ax = ax,

                                     label = 'SARIMA (0, 0, 1)x(0, 1, 1, 12) Predictions',

                                     alpha = 0.7,

                                     color = 'red')

 

# Plot confidence interval

ax.fill_between(sarima_predict_conf_1.index,

                # lower sales

                sarima_predict_conf_1.iloc[:, 0],

                # upper sales

                sarima_predict_conf_1.iloc[:, 1], color = 'k', alpha = 0.1)

 

# Titles and legends

plt.title('Sales Predictions with SARIMA Model')

plt.xlabel('Data')

plt.ylabel('Technology Category Sales')

plt.legend()

plt.show()

In [0]:

# Calculating performance

sarima_results_1 = performance(testset, sarima_predict_1.predicted_mean)

sarima_results_1

The prediction MSE is 184433.09

The prediction RMSE is 429.46

The prediction MAPE is 35.35

In [0]:

# Ljung-Box test

ljungbox_test = sms.diagnostic.acorr_ljungbox(sarima_model_v1_fit.resid, lags = [30], boxpierce = False)

print('P-value =', ljungbox_test[1])

P-value = [0.6456201]

The p-value is greater than 0.05, which indicates that the residual are independent with a 95% confidence, thefore an (0, 0, 1)x(1, 1, 0, 12) SARIMA model has a good fit.

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

Grid Search Method 2 - manual

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

Testing multiple hiperparameter combinations for the Sarima model. Since going through all possible hiperparameter combinations for all variables in a sarima model can take long, I'm limiting the value of each hiperparameter to either 0 or 1, since that range fits most datasets.

In [0]:

# Setting 'p d q' to be either 0 or 1 (range(0, 2))

# Since there are many parameters (p,d,q)(P,D,Q) anything more than this start taking a long time to train

p = d = q = range(0, 2)

In [0]:

# List with all combinations for 'p d q'

pdq = list(itertools.product(p, d, q))

pdq

Out[0]:

[(0, 0, 0),

 (0, 0, 1),

 (0, 1, 0),

 (0, 1, 1),

 (1, 0, 0),

 (1, 0, 1),

 (1, 1, 0),

 (1, 1, 1)]

In [0]:

# List with all combinations for the seasonal hiperparameters 'P D Q'

# Using List Comprehension

seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]

seasonal_pdq

Out[0]:

[(0, 0, 0, 12),

 (0, 0, 1, 12),

 (0, 1, 0, 12),

 (0, 1, 1, 12),

 (1, 0, 0, 12),

 (1, 0, 1, 12),

 (1, 1, 0, 12),

 (1, 1, 1, 12)]

In [0]:

# Grid Search

#warnings.filterwarnings("ignore")

 

# Lowest possible value for the AIC statistics (the model optimization goal)

lowest_aic = sys.maxsize

lowest = ''

 

# Loop

for param in pdq:

    for param_seasonal in seasonal_pdq:

        try:

           

            # Create model with the hiperparameter combination

            mod = sm.tsa.statespace.SARIMAX(trainset,

                                            order = param,

                                            seasonal_order = param_seasonal,

                                            enforce_stationarity = False,

                                            enforce_invertibility = False)

           

 

            # Train model

            results = mod.fit()

           

            # Print

            print('SARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic))

           

            # Check for improvement (reduction) in AIC

            if lowest_aic >  results.aic:

                lowest = 'SARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic)

                lowest_aic = results.aic

        except:

            continue

 

print ("\nModel with Lowest AIC Score: " + lowest)

SARIMA(0, 0, 0)x(0, 0, 0, 12) - AIC:588.2102390405763

SARIMA(0, 0, 0)x(0, 1, 0, 12) - AIC:363.3206300182339

SARIMA(0, 0, 0)x(1, 0, 0, 12) - AIC:379.0151254818642

SARIMA(0, 0, 0)x(1, 1, 0, 12) - AIC:191.64720213115754

SARIMA(0, 0, 1)x(0, 0, 0, 12) - AIC:556.7477551380659

SARIMA(0, 0, 1)x(0, 1, 0, 12) - AIC:350.40993759684073

SARIMA(0, 0, 1)x(1, 0, 0, 12) - AIC:379.8551441468676

SARIMA(0, 0, 1)x(1, 1, 0, 12) - AIC:193.63316082077588

SARIMA(0, 1, 0)x(0, 0, 0, 12) - AIC:543.2769140078082

SARIMA(0, 1, 0)x(0, 1, 0, 12) - AIC:364.150186670076

SARIMA(0, 1, 0)x(1, 0, 0, 12) - AIC:358.5565559049278

SARIMA(0, 1, 0)x(1, 1, 0, 12) - AIC:182.84893834777014

SARIMA(0, 1, 1)x(0, 0, 0, 12) - AIC:497.7775888290871

SARIMA(0, 1, 1)x(0, 1, 0, 12) - AIC:331.55111404956654

SARIMA(0, 1, 1)x(1, 0, 0, 12) - AIC:348.1154222267687

SARIMA(0, 1, 1)x(1, 1, 0, 12) - AIC:178.52195610425457

SARIMA(1, 0, 0)x(0, 0, 0, 12) - AIC:556.6431138617959

SARIMA(1, 0, 0)x(0, 1, 0, 12) - AIC:365.3000316836825

SARIMA(1, 0, 0)x(1, 0, 0, 12) - AIC:358.9225125802152

SARIMA(1, 0, 0)x(1, 1, 0, 12) - AIC:178.59201216997738

SARIMA(1, 0, 1)x(0, 0, 0, 12) - AIC:522.1371166193512

SARIMA(1, 0, 1)x(0, 1, 0, 12) - AIC:352.33098411264257

SARIMA(1, 0, 1)x(1, 0, 0, 12) - AIC:349.64405196314834

SARIMA(1, 0, 1)x(1, 1, 0, 12) - AIC:180.30466198764935

SARIMA(1, 1, 0)x(0, 0, 0, 12) - AIC:535.9247781811981

SARIMA(1, 1, 0)x(0, 1, 0, 12) - AIC:362.75219388274553

SARIMA(1, 1, 0)x(1, 0, 0, 12) - AIC:341.2622085096664

SARIMA(1, 1, 0)x(1, 1, 0, 12) - AIC:166.69418783304513

SARIMA(1, 1, 1)x(0, 0, 0, 12) - AIC:499.3069548304077

SARIMA(1, 1, 1)x(0, 1, 0, 12) - AIC:333.53654481308536

SARIMA(1, 1, 1)x(1, 0, 0, 12) - AIC:334.45693269725643

SARIMA(1, 1, 1)x(1, 1, 0, 12) - AIC:163.8458481947634

 

Model with Lowest AIC Score: SARIMA(1, 1, 1)x(1, 1, 0, 12) - AIC:163.8458481947634

In [0]:

# Create the model using the best hiperparameters

sarima_model_v2 = sm.tsa.statespace.SARIMAX(trainset,

                                             order = (1, 1, 1),

                                             seasonal_order = (1, 1, 0, 12),

                                             enforce_stationarity = False,

                                             enforce_invertibility = False)

In [0]:

# Train (fit) model

sarima_model_v2_fit = sarima_model_v2.fit()

In [0]:

# Model summary

print(sarima_model_v2_fit.summary())

                                 Statespace Model Results                                

==========================================================================================

Dep. Variable:                              sales   No. Observations:                   36

Model:             SARIMAX(1, 1, 1)x(1, 1, 0, 12)   Log Likelihood                 -77.923

Date:                            Sat, 09 May 2020   AIC                            163.846

Time:                                    17:29:17   BIC                            165.056

Sample:                                01-01-2014   HQIC                           162.518

                                     - 12-01-2016                                        

Covariance Type:                              opg                                        

==============================================================================

                 coef    std err          z      P>|z|      [0.025      0.975]

------------------------------------------------------------------------------

ar.L1          0.0311      0.614      0.051      0.960      -1.172       1.234

ma.L1         -1.0000      0.662     -1.511      0.131      -2.297       0.297

ar.S.L12      -0.2469      0.749     -0.330      0.742      -1.714       1.220

sigma2      3.127e+05   2.12e-06   1.48e+11      0.000    3.13e+05    3.13e+05

===================================================================================

Ljung-Box (Q):                         nan   Jarque-Bera (JB):                 0.61

Prob(Q):                               nan   Prob(JB):                         0.74

Heteroskedasticity (H):               5.33   Skew:                             0.60

Prob(H) (two-sided):                  0.20   Kurtosis:                         2.83

===================================================================================

 

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 1.83e+27. Standard errors may be unstable.

In [0]:

# Model diagnostic

sarima_model_v2_fit.plot_diagnostics(lags = 8, figsize = (16,8))

plt.show()

Model Diagnosis:

The model diagnosis suggest that it is normally distributed based on:

In [0]:

# Predicting

sarima_predict_2 = sarima_model_v2_fit.get_prediction(start = pd.to_datetime('2017-01-01'),

                                                       end = pd.to_datetime('2017-12-01'),

                                                       dynamic = False)

In [0]:

# Confidence interval

sarima_predict_conf_2 = sarima_predict_2.conf_int()

sarima_predict_conf_2

Out[0]:

 

lower sales

upper sales

2017-01-01

-443.478833

1821.156127

2017-02-01

95.061691

2365.222326

2017-03-01

62.783785

2333.087410

2017-04-01

-102.085918

2168.222126

2017-05-01

477.698336

2748.006518

2017-06-01

-57.419156

2212.889031

2017-07-01

-138.700632

2131.607555

2017-08-01

-295.959650

1974.348537

2017-09-01

162.479117

2432.787305

2017-10-01

697.109839

2967.418027

2017-11-01

139.913208

2410.221396

2017-12-01

196.851484

2467.159673

In [0]:

rcParams['figure.figsize'] = 20,8

 

# Plot observed values

ax = sales_technology_monthly_mean.plot(label = 'Observed Values', color = '#2574BF')

 

# Plot predicted values

sarima_predict_2.predicted_mean.plot(ax = ax,

                                     label = 'SARIMA (1, 1, 1)x(0, 1, 1, 12) Predictions',

                                     alpha = 0.7,

                                     color = 'red')

 

# Plot confidence interval

ax.fill_between(sarima_predict_conf_2.index,

                # lower sales

                sarima_predict_conf_2.iloc[:, 0],

                # upper sales

                sarima_predict_conf_2.iloc[:, 1], color = 'k', alpha = 0.1)

 

# Titles and legends

plt.title('Sales Predictions with SARIMA Model')

plt.xlabel('Data')

plt.ylabel('Technology Category Sales')

plt.legend()

plt.show()

In [0]:

# Calculating performance

sarima_results_2 = performance(testset, sarima_predict_2.predicted_mean)

sarima_results_2

The prediction MSE is 229093.55

The prediction RMSE is 478.64

The prediction MAPE is 47.48

In [0]:

# Ljung-Box test

ljungbox_test = sms.diagnostic.acorr_ljungbox(sarima_model_v2_fit.resid, lags = [30], boxpierce = False)

print('P-value =', ljungbox_test[1])

P-value = [0.20204613]

The p-value is greater than 0.05, which indicates that the residual are independent with a 95% confidence, thefore an (1, 1, 1)x(1, 1, 0, 12) SARIMA model has a good fit.

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX

SARIMA + Exogenous Variable (Holidays)

Disclaimer: Using a daily frequency exogenous variable (such as holidays) on a monthly frequency time series is inappropriate. This was done for experimental purposes.

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

Create dataframe with holidays

In [0]:

# Create empty dataframe

festivities = pd.Series()

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: DeprecationWarning:

 

The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

 

In [0]:

# Retrieving all holidays in the US from 2014 to 2017

for i, festivity in holidays.US(years = [2014, 2015, 2016, 2017]).items():

    festivities[i] = festivity

In [0]:

# Visualizing data

festivities.head(8)

Out[0]:

2016-01-01                 New Year's Day

2016-01-18    Martin Luther King, Jr. Day

2016-02-15          Washington's Birthday

2016-05-30                   Memorial Day

2016-07-04               Independence Day

2016-09-05                      Labor Day

2016-10-10                   Columbus Day

2016-11-11                   Veterans Day

dtype: object

In [0]:

# Type

type(festivities)

Out[0]:

pandas.core.series.Series

In [0]:

# Converting the series to dataframe

festivities_df = pd.DataFrame(festivities)

In [0]:

# Type

type(festivities_df)

Out[0]:

pandas.core.frame.DataFrame

In [0]:

# Shape

festivities_df.shape

Out[0]:

(44, 1)

In [0]:

# Resetting index to change column names

festivities_df.reset_index(level = 0, inplace = True)

In [0]:

# Ajusta o nome das colunas

festivities_df.columns = ['date_festivity', 'festivity']

In [0]:

# Visualiza

festivities_df.head()

Out[0]:

 

date_festivity

festivity

0

2016-01-01

New Year's Day

1

2016-01-18

Martin Luther King, Jr. Day

2

2016-02-15

Washington's Birthday

3

2016-05-30

Memorial Day

4

2016-07-04

Independence Day

In [0]:

# Data types

festivities_df.dtypes

Out[0]:

date_festivity    object

festivity         object

dtype: object

In [0]:

# Setting the date column as datetime type

festivities_df['date_festivity'] = pd.to_datetime(festivities_df['date_festivity'])

In [0]:

# Data types

festivities_df.dtypes

Out[0]:

date_festivity    datetime64[ns]

festivity                 object

dtype: object

In [0]:

# Function to add holidays to the sales dataframe

def add_holiday(x):

   

    # Apply rule to set a dummy variable as 1 if it's holiday

    batch_df = festivities_df.apply(lambda y: 1 if (x['order_date'] == y['date_festivity']) else None, axis=1)

 

    ### For it to work properly with monthly data need to figure a way to make the function sum all holidays in a given month

   

    # Drop null values

    batch_df = batch_df.dropna(axis = 0, how = 'all') 

 

    # If it's empty, fill with 0

    if batch_df.empty:

        batch_df = 0

    else:

        batch_df = batch_df.to_string(index = False)

       

    return batch_df

In [0]:

# Confirming object type

type(sales_technology_monthly_mean)

Out[0]:

pandas.core.series.Series

In [0]:

# Convert series to dataframe

sales_technology_monthly_mean_df = pd.DataFrame(sales_technology_monthly_mean)

In [0]:

# Confirm object type

type(sales_technology_monthly_mean_df)

Out[0]:

pandas.core.frame.DataFrame

In [0]:

# Reset index to rename columns

sales_technology_monthly_mean_df.reset_index(level = 0, inplace = True)

In [0]:

# Rename columns

sales_technology_monthly_mean_df.columns = ['order_date', 'sales']

In [0]:

# Checking

sales_technology_monthly_mean_df.head(3)

Out[0]:

 

order_date

sales

0

2014-01-01

449.041429

1

2014-02-01

229.787143

2

2014-03-01

2031.948375

In [0]:

# Data types

sales_technology_monthly_mean_df.dtypes

Out[0]:

order_date    datetime64[ns]

sales                float64

dtype: object

In [0]:

# Applying the function on a newly created holiday column

sales_technology_monthly_mean_df['festivity'] = sales_technology_monthly_mean_df.apply(add_holiday, axis = 1)

In [0]:

# Checking

sales_technology_monthly_mean_df.head(3)

Out[0]:

 

order_date

sales

festivity

0

2014-01-01

449.041429

1.0

1

2014-02-01

229.787143

0

2

2014-03-01

2031.948375

0

In [0]:

# Converting the holiday column to integer

sales_technology_monthly_mean_df['festivity'] = pd.to_numeric(sales_technology_monthly_mean_df['festivity'], downcast = 'integer')

In [0]:

# Checking

sales_technology_monthly_mean_df.head(3)

Out[0]:

 

order_date

sales

festivity

0

2014-01-01

449.041429

1

1

2014-02-01

229.787143

0

2

2014-03-01

2031.948375

0

In [0]:

# Setting order_date as index

sales_technology_monthly_mean_df.set_index("order_date", inplace = True)

In [0]:

# Checking

sales_technology_monthly_mean_df.head(3)

Out[0]:

 

sales

festivity

order_date

 

 

2014-01-01

449.041429

1

2014-02-01

229.787143

0

2014-03-01

2031.948375

0

In [0]:

# Deleting the original series (of series type)

del sales_technology_monthly_mean

In [0]:

# Recreating the original series (as dataframe)

sales_technology_monthly_mean = sales_technology_monthly_mean_df

In [0]:

# Voilá

sales_technology_monthly_mean

Out[0]:

 

sales

festivity

order_date

 

 

2014-01-01

449.041429

1

2014-02-01

229.787143

0

2014-03-01

2031.948375

0

2014-04-01

613.028933

0

2014-05-01

564.698588

0

2014-06-01

766.905909

0

2014-07-01

533.608933

0

2014-08-01

708.435385

0

2014-09-01

2035.838133

1

2014-10-01

596.900900

0

2014-11-01

1208.056320

0

2014-12-01

1160.732889

0

2015-01-01

925.070800

1

2015-02-01

431.121250

0

2015-03-01

574.662333

0

2015-04-01

697.559500

0

2015-05-01

831.642857

0

2015-06-01

429.024400

0

2015-07-01

691.397733

0

2015-08-01

1108.902286

0

2015-09-01

950.856400

0

2015-10-01

594.716111

0

2015-11-01

1037.982652

0

2015-12-01

1619.637636

0

2016-01-01

374.671067

1

2016-02-01

1225.891400

0

2016-03-01

1135.150105

0

2016-04-01

875.911882

0

2016-05-01

1601.816167

0

2016-06-01

1023.259500

0

2016-07-01

829.312500

0

2016-08-01

483.620100

0

2016-09-01

1144.170300

0

2016-10-01

1970.835875

0

2016-11-01

1085.642360

0

2016-12-01

970.554870

0

2017-01-01

1195.218071

1

2017-02-01

430.501714

0

2017-03-01

1392.859250

0

2017-04-01

825.559133

0

2017-05-01

678.329400

0

2017-06-01

853.055000

0

2017-07-01

1054.996636

0

2017-08-01

978.842333

0

2017-09-01

1077.704120

0

2017-10-01

1493.439227

0

2017-11-01

1996.750920

0

2017-12-01

955.865652

0

As expected, there is something off.

The exogenous variable will not work as intended because since the series is monthly the sales date (the date used to represents the month's average sales) is always the first day of the month. Hence only when the holiday occurs on the first day of the month will it be considered in the model, which is this case is mostly january 1st of each year. It's also not clear whether a exogenous variable with holidays should be used on monthly time series since it's not necessarily the case that a having a holiday whithin a given month will impact that month's average sales. This could be avoided by using daily time series, although that was not the requested analysis for this business problem.

Continuing nevertheless for experimentation purposes.

In [0]:

# Train test split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

In [0]:

len(trainset)

Out[0]:

36

In [0]:

len(testset)

Out[0]:

12

For this SARIMAX model an additional step is needed in splitting the data, as the exogenous variable cannot be included as part of the target (Y) datapoints (simply because it is not). The goal is predicting sales, and not predicting holidays.

In [0]:

# Splitting the trainset columns

# First using only sales on the data series

train_data = pd.Series(trainset['sales'])

In [0]:

# Type

type(train_data)

Out[0]:

pandas.core.series.Series

In [0]:

# Second creating another series with only the holiday (plus a constant which is required by statsmodels)

train_exog_var = sm.add_constant(trainset['festivity'])

In [0]:

# Type

type(train_exog_var)

Out[0]:

pandas.core.frame.DataFrame

In [0]:

# Checking data types

train_exog_var.dtypes

Out[0]:

const        float64

festivity       int8

dtype: object

In [0]:

# Checking the output dataframe

train_exog_var.head(3)

Out[0]:

 

const

festivity

order_date

 

 

2014-01-01

1.0

1

2014-02-01

1.0

0

2014-03-01

1.0

0

Even though the cell above contains two series (two columns), for processing with Statsmodels the data series (Y) must be of object type 'Series' and the series with the exogenous variable must be of object type 'Dataframe', otherwise there will be errors during processing.

Repeating the same for test data:

In [0]:

# Repeating process for the test data

# First adding only sales to a series

test_data = pd.Series(testset['sales'])

In [0]:

# Second creating another series with only the holiday (plus a constant which is required by statsmodels)

test_exog_var = sm.add_constant(testset['festivity'])

Optimizing hiperparameters for the SARIMA model with exogenous variables.

In [0]:

# Setting 'p d q' to be either 0 or 1 (range(0, 2))

p = d = q = range(0, 2)

In [0]:

# List with all combinations for 'p d q'

pdq = list(itertools.product(p, d, q))

pdq

Out[0]:

[(0, 0, 0),

 (0, 0, 1),

 (0, 1, 0),

 (0, 1, 1),

 (1, 0, 0),

 (1, 0, 1),

 (1, 1, 0),

 (1, 1, 1)]

In [0]:

# List with all combinations for the seasonal hiperparameters 'P D Q'

# Using List Comprehension

seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]

seasonal_pdq

Out[0]:

[(0, 0, 0, 12),

 (0, 0, 1, 12),

 (0, 1, 0, 12),

 (0, 1, 1, 12),

 (1, 0, 0, 12),

 (1, 0, 1, 12),

 (1, 1, 0, 12),

 (1, 1, 1, 12)]

In [0]:

# Grid Search

#warnings.filterwarnings("ignore")

 

# Lowest possible value for the AIC statistics (the model optimization goal)

lowest_aic = sys.maxsize

lowest = ''

 

# Loop

for param in pdq:

    for param_seasonal in seasonal_pdq:

        try:

           

            # Create model with the hiperparameter combination

            mod = sm.tsa.statespace.SARIMAX(train_data,

                                            train_exog_var,

                                            order = param,

                                            seasonal_order = param_seasonal,

                                            enforce_stationarity = False,

                                            enforce_invertibility = False)

           

            # Train model

            results = mod.fit()

           

            # Print

            print('SARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic))

           

            # Check for improvement (reduction) in AIC

            if lowest_aic >  results.aic:

                lowest = 'SARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic)

                lowest_aic = results.aic

        except:

            continue

 

print ("\nModel with Lowest AIC Score: " + lowest)

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(0, 0, 0)x(0, 0, 0, 12) - AIC:533.4308185633837

SARIMA(0, 0, 0)x(0, 1, 0, 12) - AIC:364.0768617188458

SARIMA(0, 0, 0)x(1, 0, 0, 12) - AIC:361.0882008235692

SARIMA(0, 0, 0)x(1, 1, 0, 12) - AIC:195.54049883217485

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(0, 0, 1)x(0, 0, 0, 12) - AIC:518.5675113657297

SARIMA(0, 0, 1)x(0, 1, 0, 12) - AIC:351.36523949742923

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning:

 

Maximum Likelihood optimization failed to converge. Check mle_retvals

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(0, 0, 1)x(1, 0, 0, 12) - AIC:362.4747141947214

SARIMA(0, 0, 1)x(1, 1, 0, 12) - AIC:197.52806247393855

SARIMA(0, 1, 0)x(0, 0, 0, 12) - AIC:546.976725709374

SARIMA(0, 1, 0)x(0, 1, 0, 12) - AIC:363.7400159305232

SARIMA(0, 1, 0)x(1, 0, 0, 12) - AIC:359.4132617639312

SARIMA(0, 1, 0)x(1, 1, 0, 12) - AIC:186.52900012917277

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(0, 1, 1)x(0, 0, 0, 12) - AIC:501.0639072323787

SARIMA(0, 1, 1)x(0, 1, 0, 12) - AIC:330.33020470834214

SARIMA(0, 1, 1)x(1, 0, 0, 12) - AIC:353.1783308381001

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(0, 1, 1)x(1, 1, 0, 12) - AIC:181.604654088868

SARIMA(1, 0, 0)x(0, 0, 0, 12) - AIC:535.1150857738232

SARIMA(1, 0, 0)x(0, 1, 0, 12) - AIC:366.0656010365497

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning:

 

Maximum Likelihood optimization failed to converge. Check mle_retvals

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(1, 0, 0)x(1, 0, 0, 12) - AIC:348.73978450832993

SARIMA(1, 0, 0)x(1, 1, 0, 12) - AIC:182.4691677016649

SARIMA(1, 0, 1)x(0, 0, 0, 12) - AIC:514.6120860334802

SARIMA(1, 0, 1)x(0, 1, 0, 12) - AIC:352.3818916296388

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning:

 

Maximum Likelihood optimization failed to converge. Check mle_retvals

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(1, 0, 1)x(1, 0, 0, 12) - AIC:344.03475858232713

SARIMA(1, 0, 1)x(1, 1, 0, 12) - AIC:184.0505361995584

SARIMA(1, 1, 0)x(0, 0, 0, 12) - AIC:539.9173420531635

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(1, 1, 0)x(0, 1, 0, 12) - AIC:363.4417845745284

SARIMA(1, 1, 0)x(1, 0, 0, 12) - AIC:339.3264142700377

SARIMA(1, 1, 0)x(1, 1, 0, 12) - AIC:170.3345702568878

SARIMA(1, 1, 1)x(0, 0, 0, 12) - AIC:502.4232707233004

SARIMA(1, 1, 1)x(0, 1, 0, 12) - AIC:332.3301914245551

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(1, 1, 1)x(1, 0, 0, 12) - AIC:334.66472345976837

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

SARIMA(1, 1, 1)x(1, 1, 0, 12) - AIC:167.51614209629545

 

Model with Lowest AIC Score: SARIMA(1, 1, 1)x(1, 1, 0, 12) - AIC:167.51614209629545

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

In [0]:

# Create the model using the best hiperparameters

sarima_model_v3 = sm.tsa.statespace.SARIMAX(train_data,

                                             train_exog_var,

                                             order = (1, 1, 1),

                                             seasonal_order = (1, 1, 0, 12),

                                             enforce_stationarity = False,

                                             enforce_invertibility=False)

/usr/local/lib/python3.6/dist-packages/statsmodels/tsa/base/tsa_model.py:165: ValueWarning:

 

No frequency information was provided, so inferred frequency MS will be used.

 

In [0]:

# Train (fit) model

sarima_model_v3_fit = sarima_model_v3.fit()

In [0]:

# Model summary

print(sarima_model_v3_fit.summary())

                                 Statespace Model Results                                

==========================================================================================

Dep. Variable:                              sales   No. Observations:                   36

Model:             SARIMAX(1, 1, 1)x(1, 1, 0, 12)   Log Likelihood                 -77.758

Date:                            Sat, 09 May 2020   AIC                            167.516

Time:                                    17:29:24   BIC                            169.332

Sample:                                01-01-2014   HQIC                           165.525

                                     - 12-01-2016                                        

Covariance Type:                              opg                                        

==============================================================================

                 coef    std err          z      P>|z|      [0.025      0.975]

------------------------------------------------------------------------------

const          0.8396   2.06e+04   4.08e-05      1.000   -4.04e+04    4.04e+04

festivity   1283.5133   1.35e+04      0.095      0.925   -2.53e+04    2.78e+04

ar.L1         -0.0013      0.850     -0.002      0.999      -1.668       1.665

ma.L1         -1.0000      0.810     -1.235      0.217      -2.587       0.587

ar.S.L12      -0.2971      0.959     -0.310      0.757      -2.176       1.582

sigma2      3.001e+05      0.784   3.83e+05      0.000       3e+05       3e+05

===================================================================================

Ljung-Box (Q):                         nan   Jarque-Bera (JB):                 0.47

Prob(Q):                               nan   Prob(JB):                         0.79

Heteroskedasticity (H):               5.89   Skew:                             0.53

Prob(H) (two-sided):                  0.18   Kurtosis:                         2.85

===================================================================================

 

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 3.84e+24. Standard errors may be unstable.

In [0]:

# Model diagnostic

sarima_model_v3_fit.plot_diagnostics(lags = 8, figsize = (16,8))

plt.show()

In [0]:

# Predicting

sarima_predict_3 = sarima_model_v3_fit.get_prediction(start = pd.to_datetime('2017-01-01'),

                                                       end = pd.to_datetime('2017-12-01'),

                                                       exog = test_exog_var,

                                                       dynamic = True)

In [0]:

# Confidence interval

sarima_predict_conf_3 = sarima_predict_3.conf_int()

sarima_predict_conf_3

Out[0]:

 

lower sales

upper sales

2017-01-01

-303.623433

1918.199470

2017-02-01

146.953554

2368.584195

2017-03-01

125.827903

2347.458804

2017-04-01

-19.863050

2201.767852

2017-05-01

530.188240

2751.819144

2017-06-01

3.909651

2225.540557

2017-07-01

-54.446849

2167.184060

2017-08-01

-173.363781

2048.267130

2017-09-01

243.949714

2465.580627

2017-10-01

719.157707

2940.788622

2017-11-01

228.701292

2450.332209

2017-12-01

320.643062

2542.273981

In [0]:

rcParams['figure.figsize'] = 20,8

 

# Plot observed values

ax = sales_technology_monthly_mean.plot(label = 'Observed Values', color = '#2574BF')

 

# Plot predicted values

sarima_predict_3.predicted_mean.plot(ax = ax,

                                     label = 'SARIMA (1, 1, 1)x(1, 1, 0, 12) with Exogenous Variable Predictions',

                                     alpha = 0.7,

                                     color = 'red')

 

# Plot confidence interval

ax.fill_between(sarima_predict_conf_3.index,

                # lower sales

                sarima_predict_conf_3.iloc[:, 0],

                # upper sales

                sarima_predict_conf_3.iloc[:, 1], color = 'k', alpha = 0.1)

 

# Titles and legends

plt.title('Sales Predictions with SARIMA Model')

plt.xlabel('Data')

plt.ylabel('Technology Category Sales')

plt.legend()

plt.show()

In [0]:

# Calculating performance

sarima_results_3 = performance(test_data, sarima_predict_3.predicted_mean)

sarima_results_3

The prediction MSE is 231232.42

The prediction RMSE is 480.87

The prediction MAPE is 47.99

In [0]:

# Ljung-Box test

ljungbox_test = sms.diagnostic.acorr_ljungbox(sarima_model_v3_fit.resid, lags = [30], boxpierce = False)

print('P-value =', ljungbox_test[1])

P-value = [0.46381394]

The p-value is greater than 0.05, which indicates that the residual are independent with a 95% confidence, thefore an (1, 1, 1)x(1, 1, 0, 12) SARIMAX model has a good fit.

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet Model

Prophet holiday documentation:

https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html

To include holidays and other recurring events into a time series model with Prophet it's necessary to create an additional dataframe to feed the model.

Prophet requires a dataframe with two columns (holiday and ds) and a row for each occurance of the holiday. The dataframe must include all occurances of the holiday, both in the past and in all future dates the model is expected to predict.

It's also possible to include the columns lower_window and upper_window, which extend the holiday to [lower_window, upper_window] days around the date. Essentially a way of indicating extended holidays.

Since this analysis is being conducted on a monthly time series, it doesn't necessarily make sense to include holidays, nevertheless I'm option to include it here as in Prophet's case this variable should not negatively influence the model, plus this could easiy be reverted by emptying the holiday dataframe right before feeding it into the algorithm training process.

Prophet requires that the date column be named 'ds' and the target column be named 'y'

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

In [0]:

# Dataframe with holidays

holidays_df = pd.DataFrame([])

for date, name in sorted(holidays.UnitedStates(years=[2014,2015,2016,2017]).items()):

    holidays_df = holidays_df.append(pd.DataFrame({'ds': date, 'holiday': name}, index=[0]), ignore_index=True)

holidays_df['ds'] = pd.to_datetime(holidays_df['ds'], format='%Y-%m-%d', errors='ignore')

In [0]:

# Creating dataframes for train and test data

df_train = pd.DataFrame({'order_date':trainset.index, 'sales':trainset.values})

df_test = pd.DataFrame({'order_date':testset.index, 'sales':testset.values})

In [0]:

# Renaming columns: Prophet requires columns to be names 'ds' and 'y'

df_train = df_train.rename(columns = {'order_date': 'ds', 'sales': 'y'})

df_test = df_test.rename(columns = {'order_date': 'ds', 'sales': 'y'})

In [0]:

# Create a Prophet model with annual seasonalisty and the holidays dataframe

prophet_model = Prophet(yearly_seasonality = True, holidays = holidays_df)

https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html#built-in-country-holidays

Using Prophet's built-in country holiday module, which allows for easy inclusion of holidays into a prophet model for future prediction.

In [0]:

# Adding the built-in Country Holiday method to the model

prophet_model.add_country_holidays(country_name = 'US')

Out[0]:

<fbprophet.forecaster.Prophet at 0x7fb472f27ac8>

In [0]:

# Training

prophet_model.fit(df_train)

INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.

Out[0]:

<fbprophet.forecaster.Prophet at 0x7fb472f27ac8>

In [0]:

# Creating dataframe to fill with predictions

prophet_predictions_df = prophet_model.make_future_dataframe(periods = 12, freq = 'MS')

prophet_predictions_df.count()

Out[0]:

ds    48

dtype: int64

In [0]:

# Forecast

prophet_model_predictions = prophet_model.predict(prophet_predictions_df)

In [0]:

# Checking predictions

prophet_model_predictions[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[0]:

 

ds

yhat

yhat_lower

yhat_upper

43

2017-08-01

790.707497

499.801894

1088.274920

44

2017-09-01

1218.777403

927.646193

1521.812445

45

2017-10-01

1566.094812

1269.012926

1849.231712

46

2017-11-01

1315.903621

996.833877

1607.896813

47

2017-12-01

1343.235540

1062.111494

1669.003815

In [0]:

# Creating a plot to visualize predictions

 

# Plot predictions

fig = prophet_model.plot(prophet_model_predictions)

 

# Plot actual sales data in red

plt.plot(testset, label = 'Test', color = 'red', linewidth = 2)

plt.show()

In [0]:

# Checking the entire output dataframe

prophet_model_predictions.head()

Out[0]:

 

ds

trend

yhat_lower

yhat_upper

trend_lower

trend_upper

Christmas Day

Christmas Day_lower

Christmas Day_upper

Christmas Day (Observed)

Christmas Day (Observed)_lower

Christmas Day (Observed)_upper

Columbus Day

Columbus Day_lower

Columbus Day_upper

Independence Day

Independence Day_lower

Independence Day_upper

Independence Day (Observed)

Independence Day (Observed)_lower

Independence Day (Observed)_upper

Labor Day

Labor Day_lower

Labor Day_upper

Martin Luther King, Jr. Day

Martin Luther King, Jr. Day_lower

Martin Luther King, Jr. Day_upper

Memorial Day

Memorial Day_lower

Memorial Day_upper

New Year's Day

New Year's Day_lower

New Year's Day_upper

New Year's Day (Observed)

New Year's Day (Observed)_lower

New Year's Day (Observed)_upper

Thanksgiving

Thanksgiving_lower

Thanksgiving_upper

Veterans Day

Veterans Day_lower

Veterans Day_upper

Veterans Day (Observed)

Veterans Day (Observed)_lower

Veterans Day (Observed)_upper

Washington's Birthday

Washington's Birthday_lower

Washington's Birthday_upper

additive_terms

additive_terms_lower

additive_terms_upper

holidays

holidays_lower

holidays_upper

yearly

yearly_lower

yearly_upper

multiplicative_terms

multiplicative_terms_lower

multiplicative_terms_upper

yhat

0

2014-01-01

925.615137

432.789624

1012.222619

925.615137

925.615137

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-860.551851

-860.551851

-860.551851

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-203.302048

-203.302048

-203.302048

-860.551851

-860.551851

-860.551851

657.249803

657.249803

657.249803

0.0

0.0

0.0

722.313089

1

2014-02-01

935.580145

-90.228342

512.658813

935.580145

935.580145

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.000000

0.000000

0.000000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-709.376810

-709.376810

-709.376810

0.000000

0.000000

0.000000

-709.376810

-709.376810

-709.376810

0.0

0.0

0.0

226.203335

2

2014-03-01

944.580797

807.834233

1419.451660

944.580797

944.580797

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.000000

0.000000

0.000000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

167.586272

167.586272

167.586272

0.000000

0.000000

0.000000

167.586272

167.586272

167.586272

0.0

0.0

0.0

1112.167069

3

2014-04-01

954.545805

323.132499

931.465200

954.545805

954.545805

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.000000

0.000000

0.000000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-341.771260

-341.771260

-341.771260

0.000000

0.000000

0.000000

-341.771260

-341.771260

-341.771260

0.0

0.0

0.0

612.774545

4

2014-05-01

964.189361

505.974976

1116.262684

964.189361

964.189361

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.000000

0.000000

0.000000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-145.341315

-145.341315

-145.341315

0.000000

0.000000

0.000000

-145.341315

-145.341315

-145.341315

0.0

0.0

0.0

818.848046

In [0]:

# Plot

 

# Original series

plt.plot(sales_technology_monthly_mean.index,

         sales_technology_monthly_mean.values,

         label = 'Observed Values',

         color = '#2574BF')

 

# Predictions

plt.plot(sales_technology_monthly_mean[36:48].index,

         prophet_model_predictions[36:48]['yhat'].values,

         label = 'Prophet Model Predictions',

         alpha = 0.7,

         color = 'red')

 

# Confidence intervals

plt.fill_between(sales_technology_monthly_mean[36:48].index,

                 prophet_model_predictions[36:48]['yhat_lower'].values,

                 prophet_model_predictions[36:48]['yhat_upper'].values,

                 color = 'k',

                 alpha = 0.1)

 

plt.title('Forecasting with Prophet Model')

plt.xlabel('Data')

plt.ylabel('Sales')

plt.legend()

plt.show()

Using prophet_model_predictions[36:48] since the goal is to predict only the sales for the months with werent used to train the Prophet model - in the case the year 2017.

In [0]:

# Calculating performance

prophet_results = performance(testset.values, prophet_model_predictions[36:48]['yhat'])

prophet_results

The prediction MSE is 105965.29

The prediction RMSE is 325.52

The prediction MAPE is 26.45

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Part 2: https://colab.research.google.com/drive/10jJOdDusaRTQfSkKTyj3BM2OGVy_CP3N

Part 1: https://colab.research.google.com/drive/1wxHzFdM80RfreCAiODS4PSFFhG0kmMBQ

Splitting the next steps of the analysis in multiple Jupyter Notebooks to avoid creating a single file which takes too long to process. The previous analyses were Machine Learning based, the following analyses will be Neural Network based, and hence might take longer to train.

The first model will be a stacked LSTM.

Loading Packages

In [0]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.

import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import numpy as np

import pandas as pd

import itertools

from pandas import Series

from pandas.tseries.offsets import DateOffset

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

 

# Predictive modeling imports

import sklearn

import keras

from sklearn.preprocessing import MinMaxScaler

from keras.preprocessing.sequence import TimeseriesGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Activation

from keras.layers import LSTM

from keras.layers import Dropout

from keras import optimizers

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

 

# Graphics formatting imports

m.rcParams['axes.labelsize'] = 14

m.rcParams['xtick.labelsize'] = 12

m.rcParams['ytick.labelsize'] = 12

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 15,7

matplotlib.style.use('ggplot')

%matplotlib inline

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/tableau_superstore_sales.csv')

In [0]:

# Shape

data.shape

Out[0]:

(9994, 21)

In [0]:

# Columns

data.columns

Out[0]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [0]:

# Visualizing data

data.head()

Out[0]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

State

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

California

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

In [0]:

# Statistic summaries

data.describe()

Out[0]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [0]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [0]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [0]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [0]:

# Checking

data.columns

Out[0]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [0]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'Standard Class', 'Same Day', 'First Class', 'Second Class'}

segment {'Home Office', 'Corporate', 'Consumer'}

country {'United States'}

region {'East', 'South', 'West', 'Central'}

category {'Office Supplies', 'Technology', 'Furniture'}

sub_category {'Chairs', 'Accessories', 'Envelopes', 'Bookcases', 'Appliances', 'Supplies', 'Art', 'Binders', 'Tables', 'Phones', 'Fasteners', 'Furnishings', 'Machines', 'Labels', 'Paper', 'Copiers', 'Storage'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [0]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

In [0]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [0]:

# Checking dataset

ts_technology

Out[0]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [0]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [0]:

# Visualizing the series

ts_technology

Out[0]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

In [0]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [0]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [0]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

Adjusting the index type to DateTimeIndex (which characterizes a time series), so that it's possible to aggregate monthly and obtain the mean monthly sales.

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.base.Index

In [0]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.datetimes.DatetimeIndex

In [0]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [0]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[0]:

pandas.core.series.Series

In [0]:

# Checking the data

sales_technology_monthly_mean

Out[0]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

Decomposing the series to analyze its componentes.

In [0]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [0]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [0]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Function to Calculate Accuracy

In [0]:

# Function

def performance(y_true, y_pred):

    mse = ((y_pred - y_true) ** 2).mean()

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    return( print('The prediction MSE is {}'.format(round(mse, 2))+

                  '\nThe prediction RMSE is {}'.format(round(np.sqrt(mse), 2))+

                  '\nThe prediction MAPE is {}'.format(round(mape, 2))))

Train-Test Split

In [0]:

# Original series

X = sales_technology_monthly_mean

In [0]:

# Using the first 3 years (first 36 rows) for training

X[:-12]

Out[0]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

Freq: MS, Name: sales, dtype: float64

In [0]:

# Using the last year (last 12 rows) for testing

X[-12:]

Out[0]:

order_date

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Train-test split

training, testing = np.array(X[:-12]), np.array(X[-12:])

In [0]:

# Ajusta o shape, pois agora não temos um objeto pd.Series,

# mas sim um array NumPy, que é necessário para treinar o modelo LSTM

trainset = training.reshape(-1,1)

testset = testing.reshape(-1,1)

In [0]:

len(trainset)

Out[0]:

36

In [0]:

training

Out[0]:

array([ 449.04142857,  229.78714286, 2031.948375  ,  613.02893333,

        564.69858824,  766.90590909,  533.60893333,  708.43538462,

       2035.83813333,  596.9009    , 1208.05632   , 1160.73288889,

        925.0708    ,  431.12125   ,  574.66233333,  697.5595    ,

        831.64285714,  429.0244    ,  691.39773333, 1108.90228571,

        950.8564    ,  594.71611111, 1037.98265217, 1619.63763636,

        374.67106667, 1225.8914    , 1135.15010526,  875.91188235,

       1601.81616667, 1023.2595    ,  829.3125    ,  483.6201    ,

       1144.1703    , 1970.835875  , 1085.64236   ,  970.55486957])

In [0]:

trainset

Out[0]:

array([[ 449.04142857],

       [ 229.78714286],

       [2031.948375  ],

       [ 613.02893333],

       [ 564.69858824],

       [ 766.90590909],

       [ 533.60893333],

       [ 708.43538462],

       [2035.83813333],

       [ 596.9009    ],

       [1208.05632   ],

       [1160.73288889],

       [ 925.0708    ],

       [ 431.12125   ],

       [ 574.66233333],

       [ 697.5595    ],

       [ 831.64285714],

       [ 429.0244    ],

       [ 691.39773333],

       [1108.90228571],

       [ 950.8564    ],

       [ 594.71611111],

       [1037.98265217],

       [1619.63763636],

       [ 374.67106667],

       [1225.8914    ],

       [1135.15010526],

       [ 875.91188235],

       [1601.81616667],

       [1023.2595    ],

       [ 829.3125    ],

       [ 483.6201    ],

       [1144.1703    ],

       [1970.835875  ],

       [1085.64236   ],

       [ 970.55486957]])

In [0]:

len(testset)

Out[0]:

12

In [0]:

testset

Out[0]:

array([[1195.21807143],

       [ 430.50171429],

       [1392.85925   ],

       [ 825.55913333],

       [ 678.3294    ],

       [ 853.055     ],

       [1054.99663636],

       [ 978.84233333],

       [1077.70412   ],

       [1493.43922727],

       [1996.75092   ],

       [ 955.86565217]])

Stacked LSTM Model

In [0]:

# Create a scaler

scaler = MinMaxScaler()

In [0]:

# Train the scaler with the training dataset

scaler.fit(trainset)

Out[0]:

MinMaxScaler(copy=True, feature_range=(0, 1))

In [0]:

# Apply the trained scaler to the train dataset

# (No need to apply the scaler to the test dataset as the prediction will be converted back to normal scale)

trainset = scaler.transform(trainset)

In [0]:

trainset.shape

Out[0]:

(36, 1)

In [0]:

trainset

Out[0]:

array([[0.12139983],

       [0.        ],

       [0.99784626],

       [0.21219877],

       [0.18543853],

       [0.29739956],

       [0.16822437],

       [0.26502477],

       [1.        ],

       [0.20326877],

       [0.54166199],

       [0.51545928],

       [0.38497454],

       [0.11147753],

       [0.1909554 ],

       [0.25900285],

       [0.33324403],

       [0.11031652],

       [0.25559112],

       [0.48676098],

       [0.39925188],

       [0.20205906],

       [0.44749318],

       [0.76955219],

       [0.08022139],

       [0.55153717],

       [0.50129424],

       [0.35775554],

       [0.75968454],

       [0.43934106],

       [0.33195373],

       [0.14054584],

       [0.50628867],

       [0.96400863],

       [0.47388209],

       [0.41015881]])

Defining hyperparameters

In [0]:

# Number of repetitions

n_rep = 20

 

# Number of epochs

num_epochs = 200

 

# Number of inputs (using 12 series to predict the next 12 series)

n_input = 12

 

# Length of the output sequency (in number of timesteps)

n_output = 12

 

# This series is univariate, therefore only 1 feature

n_features = 1

 

# Number of time series samples in each batch

size_batch = 10

The TimeseriesGenerator from Keras creates a dataset of sliding windows over a timeseries provided as array. In other words, it automatically transforms a univariate time series dataset in a dataset for supervised learning.

https://keras.io/preprocessing/sequence/

Utility class for generating batches of temporal data.

This class takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation.

In [0]:

# Generator

generator = TimeseriesGenerator(trainset,

                                trainset,

                                length = n_output,

                                batch_size = size_batch)

Literature on hyperparameters:

https://keras.io/layers/recurrent/

In [0]:

# Creating and training the stacked LSTM model

 

# Creating a zeroed matrix to receive the output from the model's predictions

result = np.zeros((n_input, n_rep))

 

# Loop

# Repeating the training process N times and storing the results, this way different samples can be used and then averaged for a final prediction

for i in range(n_rep):

   

    # Starting the model (Keras Sequential())

    lstm_model = Sequential()

   

    # Input LSTM layer

    # Need return_sequences = True since I need the output to be another sequency which I can feed to the stacked layer

    lstm_model.add(LSTM(40, activation = 'tanh', return_sequences = True, input_shape = (n_input, n_features)))

   

    # Stacked LSTM layer

    lstm_model.add(LSTM(40, activation = 'relu'))

 

    # First hidden layer

    lstm_model.add(Dense(50, activation = 'relu'))

   

    # Second hidden layer

    lstm_model.add(Dense(50, activation = 'relu'))

   

    # Output layer

    # Only need 1 neuron since this is a regression problem (aka I'm now merging the information to come up with a final prediction value)

    lstm_model.add(Dense(1))

   

    # Defining the loss function as MSE

    # Defininf the optimization algorithm as ADAM

    adam = optimizers.Adam(learning_rate = 0.001)

    lstm_model.compile(optimizer = adam, loss = 'mean_squared_error')

   

    # Training with the generated data batches

    lstm_model.fit_generator(generator, epochs = num_epochs)

   

    # Predictions list

    pred_list = []

 

    # Make a batch of data

    batch = trainset[-n_input:].reshape((1, n_input, n_features))

 

    # Loop to make predictions

    for j in range(n_input):  

        pred_list.append(lstm_model.predict(batch)[0])

        batch = np.append(batch[:,1:,:], [[pred_list[j]]], axis = 1)

 

    # Create a dataframe with the predictions

    df_predict_lstm_model = pd.DataFrame(scaler.inverse_transform(pred_list),

                                      index = X[-n_input:].index, columns = ['Prediction'])

 

    result[:,i] = df_predict_lstm_model['Prediction']

   

print(result)

Streaming output truncated to the last 5000 lines.

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 126/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 127/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0513

Epoch 128/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0518

Epoch 129/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 130/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0510

Epoch 131/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 132/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 133/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 134/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 135/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 136/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 137/200

3/3 [==============================] - 0s 56ms/step - loss: 0.0518

Epoch 138/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 139/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 140/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0510

Epoch 141/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0508

Epoch 142/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 143/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0507

Epoch 144/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 145/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 146/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 147/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 148/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 149/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 150/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 151/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 152/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0516

Epoch 153/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0515

Epoch 154/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 155/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 156/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 157/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 158/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 159/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 160/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 161/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 162/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0518

Epoch 163/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 164/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 165/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 166/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 167/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 168/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0507

Epoch 169/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 170/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 171/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 172/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0523

Epoch 173/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0524

Epoch 174/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 175/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 176/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 177/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 178/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 179/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 180/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0505

Epoch 181/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0520

Epoch 182/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 183/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 184/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 185/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 186/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 187/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 188/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 189/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0518

Epoch 190/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 191/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 192/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 193/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 194/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 195/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 196/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 197/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 198/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 199/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0504

Epoch 200/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 1/200

3/3 [==============================] - 1s 270ms/step - loss: 0.2248

Epoch 2/200

3/3 [==============================] - 0s 64ms/step - loss: 0.2068

Epoch 3/200

3/3 [==============================] - 0s 60ms/step - loss: 0.1871

Epoch 4/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1672

Epoch 5/200

3/3 [==============================] - 0s 77ms/step - loss: 0.1364

Epoch 6/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0976

Epoch 7/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0634

Epoch 8/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0472

Epoch 9/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0591

Epoch 10/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0665

Epoch 11/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0571

Epoch 12/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0496

Epoch 13/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0523

Epoch 14/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0526

Epoch 15/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0525

Epoch 16/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0520

Epoch 17/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0503

Epoch 18/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 19/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 20/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0529

Epoch 21/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0523

Epoch 22/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 23/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 24/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 25/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0515

Epoch 26/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0517

Epoch 27/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 28/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0507

Epoch 29/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 30/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 31/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0516

Epoch 32/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 33/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 34/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 35/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 36/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 37/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 38/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0517

Epoch 39/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 40/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 41/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 42/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 43/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 44/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 45/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0514

Epoch 46/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 47/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 48/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 49/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 50/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0506

Epoch 51/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0515

Epoch 52/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 53/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 54/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 55/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 56/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 57/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0512

Epoch 58/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 59/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0518

Epoch 60/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 61/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 62/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0519

Epoch 63/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 64/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 65/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 66/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 67/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 68/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 69/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 70/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 71/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 72/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 73/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 74/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 75/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0517

Epoch 76/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0526

Epoch 77/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 78/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0514

Epoch 79/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0525

Epoch 80/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 81/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 82/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 83/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 84/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 85/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0509

Epoch 86/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 87/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 88/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 89/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 90/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 91/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 92/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0515

Epoch 93/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0517

Epoch 94/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 95/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 96/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0515

Epoch 97/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 98/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 99/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 100/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 101/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 102/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 103/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 104/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 105/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 106/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0517

Epoch 107/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 108/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 109/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 110/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0517

Epoch 111/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 112/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 113/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 114/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 115/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 116/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 117/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 118/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 119/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 120/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0510

Epoch 121/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 122/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 123/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 124/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0521

Epoch 125/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0523

Epoch 126/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 127/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 128/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 129/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 130/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0505

Epoch 131/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0516

Epoch 132/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0513

Epoch 133/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0515

Epoch 134/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 135/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0513

Epoch 136/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 137/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 138/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 139/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0517

Epoch 140/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 141/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0520

Epoch 142/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 143/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0519

Epoch 144/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 145/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0522

Epoch 146/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 147/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 148/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 149/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 150/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 151/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0516

Epoch 152/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 153/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 154/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0518

Epoch 155/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 156/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 157/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 158/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 159/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 160/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0519

Epoch 161/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 162/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0509

Epoch 163/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 164/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 165/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 166/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 167/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 168/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 169/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 170/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 171/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 172/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0515

Epoch 173/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 174/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 175/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 176/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0509

Epoch 177/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 178/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 179/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0509

Epoch 180/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 181/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 182/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 183/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 184/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0521

Epoch 185/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 186/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 187/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 188/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0521

Epoch 189/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 190/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 191/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 192/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 193/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 194/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0523

Epoch 195/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0517

Epoch 196/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 197/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0517

Epoch 198/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 199/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 200/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0514

Epoch 1/200

3/3 [==============================] - 1s 263ms/step - loss: 0.2182

Epoch 2/200

3/3 [==============================] - 0s 58ms/step - loss: 0.1833

Epoch 3/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1481

Epoch 4/200

3/3 [==============================] - 0s 62ms/step - loss: 0.1100

Epoch 5/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0701

Epoch 6/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0460

Epoch 7/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0683

Epoch 8/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0741

Epoch 9/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0562

Epoch 10/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0557

Epoch 11/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 12/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0545

Epoch 13/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0538

Epoch 14/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0521

Epoch 15/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0507

Epoch 16/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0531

Epoch 17/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 18/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0525

Epoch 19/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0525

Epoch 20/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0520

Epoch 21/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 22/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 23/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 24/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 25/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 26/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 27/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0515

Epoch 28/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 29/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0522

Epoch 30/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0517

Epoch 31/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 32/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0511

Epoch 33/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 34/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 35/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 36/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0515

Epoch 37/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0519

Epoch 38/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 39/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 40/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 41/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 42/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 43/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 44/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 45/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 46/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 47/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 48/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 49/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 50/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0521

Epoch 51/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0515

Epoch 52/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0518

Epoch 53/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 54/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0515

Epoch 55/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 56/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0511

Epoch 57/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 58/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0520

Epoch 59/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 60/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0521

Epoch 61/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0520

Epoch 62/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0519

Epoch 63/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0519

Epoch 64/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 65/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0511

Epoch 66/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0509

Epoch 67/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 68/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0522

Epoch 69/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0521

Epoch 70/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 71/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 72/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0508

Epoch 73/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 74/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 75/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 76/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 77/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 78/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 79/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 80/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 81/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0514

Epoch 82/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0509

Epoch 83/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 84/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0513

Epoch 85/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 86/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 87/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0514

Epoch 88/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 89/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 90/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 91/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 92/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 93/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 94/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0513

Epoch 95/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0519

Epoch 96/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 97/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 98/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 99/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 100/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0525

Epoch 101/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0520

Epoch 102/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 103/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 104/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 105/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 106/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 107/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 108/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0509

Epoch 109/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 110/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 111/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 112/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 113/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 114/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 115/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 116/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 117/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 118/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 119/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 120/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 121/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0511

Epoch 122/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 123/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0509

Epoch 124/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 125/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 126/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 127/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 128/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 129/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 130/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0506

Epoch 131/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 132/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0514

Epoch 133/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0521

Epoch 134/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 135/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 136/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0504

Epoch 137/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 138/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0505

Epoch 139/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 140/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 141/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0504

Epoch 142/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 143/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0524

Epoch 144/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 145/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 146/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 147/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 148/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 149/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 150/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 151/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 152/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0509

Epoch 153/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 154/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0504

Epoch 155/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0520

Epoch 156/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0518

Epoch 157/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 158/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0527

Epoch 159/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0508

Epoch 160/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0506

Epoch 161/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 162/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 163/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0502

Epoch 164/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0501

Epoch 165/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0503

Epoch 166/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0504

Epoch 167/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 168/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 169/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 170/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0502

Epoch 171/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0506

Epoch 172/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 173/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0503

Epoch 174/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0501

Epoch 175/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0501

Epoch 176/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0502

Epoch 177/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0498

Epoch 178/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 179/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 180/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 181/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0500

Epoch 182/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0501

Epoch 183/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 184/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 185/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 186/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 187/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 188/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 189/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 190/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 191/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0504

Epoch 192/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0503

Epoch 193/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0514

Epoch 194/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0523

Epoch 195/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0524

Epoch 196/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0505

Epoch 197/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0506

Epoch 198/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0507

Epoch 199/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 200/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 1/200

3/3 [==============================] - 1s 292ms/step - loss: 0.2231

Epoch 2/200

3/3 [==============================] - 0s 63ms/step - loss: 0.1988

Epoch 3/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1740

Epoch 4/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1469

Epoch 5/200

3/3 [==============================] - 0s 63ms/step - loss: 0.1097

Epoch 6/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0802

Epoch 7/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0503

Epoch 8/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0630

Epoch 9/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0666

Epoch 10/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0584

Epoch 11/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0504

Epoch 12/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0518

Epoch 13/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 14/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0516

Epoch 15/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 16/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0515

Epoch 17/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0520

Epoch 18/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0523

Epoch 19/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0528

Epoch 20/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0520

Epoch 21/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 22/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 23/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0515

Epoch 24/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0520

Epoch 25/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 26/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 27/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 28/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 29/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0506

Epoch 30/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 31/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 32/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0520

Epoch 33/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0520

Epoch 34/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 35/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 36/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0525

Epoch 37/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 38/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 39/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0514

Epoch 40/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 41/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0517

Epoch 42/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 43/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 44/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 45/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 46/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 47/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 48/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0520

Epoch 49/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 50/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0522

Epoch 51/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 52/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 53/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 54/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0507

Epoch 55/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 56/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 57/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 58/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 59/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0521

Epoch 60/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0512

Epoch 61/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 62/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0515

Epoch 63/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0519

Epoch 64/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 65/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0517

Epoch 66/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 67/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0524

Epoch 68/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0518

Epoch 69/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0513

Epoch 70/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 71/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 72/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 73/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0519

Epoch 74/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 75/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 76/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 77/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0517

Epoch 78/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0509

Epoch 79/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 80/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 81/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 82/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 83/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 84/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 85/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 86/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 87/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 88/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 89/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 90/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 91/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0517

Epoch 92/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0520

Epoch 93/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 94/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0518

Epoch 95/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 96/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0517

Epoch 97/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 98/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 99/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 100/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0518

Epoch 101/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 102/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 103/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0509

Epoch 104/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0506

Epoch 105/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 106/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 107/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0521

Epoch 108/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0526

Epoch 109/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 110/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 111/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 112/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 113/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 114/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 115/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 116/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0509

Epoch 117/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 118/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0522

Epoch 119/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 120/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0525

Epoch 121/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 122/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 123/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 124/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 125/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 126/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 127/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 128/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 129/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0522

Epoch 130/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0517

Epoch 131/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0515

Epoch 132/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 133/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 134/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 135/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0510

Epoch 136/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 137/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 138/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 139/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 140/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 141/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 142/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 143/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 144/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 145/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 146/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 147/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 148/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 149/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 150/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 151/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0517

Epoch 152/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 153/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 154/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 155/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0519

Epoch 156/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0518

Epoch 157/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0518

Epoch 158/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 159/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 160/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 161/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0519

Epoch 162/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 163/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0523

Epoch 164/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0509

Epoch 165/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 166/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 167/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 168/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 169/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 170/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 171/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 172/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 173/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 174/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 175/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 176/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 177/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0519

Epoch 178/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 179/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0512

Epoch 180/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 181/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 182/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0516

Epoch 183/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 184/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 185/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 186/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 187/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 188/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 189/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 190/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0515

Epoch 191/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 192/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0505

Epoch 193/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0517

Epoch 194/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0512

Epoch 195/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0522

Epoch 196/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0526

Epoch 197/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 198/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 199/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0509

Epoch 200/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 1/200

3/3 [==============================] - 1s 301ms/step - loss: 0.2172

Epoch 2/200

3/3 [==============================] - 0s 61ms/step - loss: 0.1835

Epoch 3/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1541

Epoch 4/200

3/3 [==============================] - 0s 70ms/step - loss: 0.1071

Epoch 5/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0782

Epoch 6/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0457

Epoch 7/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0718

Epoch 8/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0718

Epoch 9/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0532

Epoch 10/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0497

Epoch 11/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0513

Epoch 12/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0558

Epoch 13/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0555

Epoch 14/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0532

Epoch 15/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0531

Epoch 16/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0504

Epoch 17/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 18/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0522

Epoch 19/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0524

Epoch 20/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0519

Epoch 21/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0509

Epoch 22/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0505

Epoch 23/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0505

Epoch 24/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 25/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 26/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 27/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 28/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0514

Epoch 29/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 30/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 31/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 32/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 33/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 34/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0517

Epoch 35/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 36/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 37/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0517

Epoch 38/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 39/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 40/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 41/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 42/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0509

Epoch 43/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 44/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 45/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 46/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0523

Epoch 47/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 48/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 49/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0512

Epoch 50/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 51/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 52/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 53/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0515

Epoch 54/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 55/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0517

Epoch 56/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 57/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 58/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0521

Epoch 59/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 60/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 61/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 62/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0521

Epoch 63/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0515

Epoch 64/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 65/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0517

Epoch 66/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 67/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0509

Epoch 68/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 69/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 70/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 71/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 72/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 73/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0518

Epoch 74/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 75/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 76/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0515

Epoch 77/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 78/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 79/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 80/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0520

Epoch 81/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 82/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 83/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 84/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 85/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 86/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 87/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0523

Epoch 88/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 89/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 90/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 91/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0521

Epoch 92/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 93/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0511

Epoch 94/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 95/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 96/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 97/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 98/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 99/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 100/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 101/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 102/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0520

Epoch 103/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 104/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 105/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 106/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 107/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 108/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 109/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 110/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 111/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 112/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0517

Epoch 113/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 114/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0523

Epoch 115/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 116/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0508

Epoch 117/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 118/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 119/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 120/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0517

Epoch 121/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0523

Epoch 122/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 123/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 124/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 125/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 126/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0517

Epoch 127/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 128/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 129/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 130/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 131/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 132/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0504

Epoch 133/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 134/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0519

Epoch 135/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 136/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0513

Epoch 137/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 138/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 139/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0515

Epoch 140/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0510

Epoch 141/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 142/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 143/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 144/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 145/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0506

Epoch 146/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0507

Epoch 147/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 148/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 149/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0522

Epoch 150/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0519

Epoch 151/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0518

Epoch 152/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 153/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 154/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0513

Epoch 155/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 156/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0507

Epoch 157/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 158/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 159/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 160/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 161/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 162/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 163/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0522

Epoch 164/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 165/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 166/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0515

Epoch 167/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 168/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 169/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 170/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 171/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 172/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 173/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 174/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 175/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 176/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 177/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 178/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0517

Epoch 179/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 180/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0505

Epoch 181/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0503

Epoch 182/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0507

Epoch 183/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 184/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 185/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 186/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0519

Epoch 187/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 188/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 189/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 190/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0507

Epoch 191/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 192/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 193/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 194/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0509

Epoch 195/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 196/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 197/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 198/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 199/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0516

Epoch 200/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 1/200

3/3 [==============================] - 1s 277ms/step - loss: 0.2285

Epoch 2/200

3/3 [==============================] - 0s 72ms/step - loss: 0.2050

Epoch 3/200

3/3 [==============================] - 0s 67ms/step - loss: 0.1814

Epoch 4/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1553

Epoch 5/200

3/3 [==============================] - 0s 69ms/step - loss: 0.1278

Epoch 6/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0876

Epoch 7/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0589

Epoch 8/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0636

Epoch 9/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0642

Epoch 10/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0591

Epoch 11/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0571

Epoch 12/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0519

Epoch 13/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0526

Epoch 14/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0531

Epoch 15/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0514

Epoch 16/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 17/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0527

Epoch 18/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0529

Epoch 19/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0523

Epoch 20/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0517

Epoch 21/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 22/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 23/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 24/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 25/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 26/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 27/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 28/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 29/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 30/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 31/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0520

Epoch 32/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 33/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 34/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 35/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 36/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 37/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 38/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 39/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 40/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 41/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 42/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 43/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 44/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0521

Epoch 45/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0524

Epoch 46/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 47/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0520

Epoch 48/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 49/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 50/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0506

Epoch 51/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0505

Epoch 52/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 53/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 54/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0518

Epoch 55/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0522

Epoch 56/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 57/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 58/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 59/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 60/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 61/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 62/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 63/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 64/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0519

Epoch 65/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 66/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 67/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 68/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 69/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 70/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0525

Epoch 71/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 72/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 73/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 74/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0512

Epoch 75/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 76/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 77/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 78/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0520

Epoch 79/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 80/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 81/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 82/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 83/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 84/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 85/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 86/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 87/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 88/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 89/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 90/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 91/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 92/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 93/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 94/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 95/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 96/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0505

Epoch 97/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 98/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0524

Epoch 99/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0515

Epoch 100/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 101/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0515

Epoch 102/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 103/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 104/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0511

Epoch 105/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 106/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 107/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 108/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 109/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 110/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 111/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 112/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 113/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 114/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 115/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 116/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 117/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 118/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 119/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 120/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 121/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0508

Epoch 122/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0504

Epoch 123/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0503

Epoch 124/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0502

Epoch 125/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 126/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 127/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 128/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0507

Epoch 129/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0505

Epoch 130/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0502

Epoch 131/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 132/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 133/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 134/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 135/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 136/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 137/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 138/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0504

Epoch 139/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 140/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 141/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 142/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0519

Epoch 143/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0519

Epoch 144/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 145/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0507

Epoch 146/200

3/3 [==============================] - 0s 84ms/step - loss: 0.0513

Epoch 147/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 148/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 149/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 150/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0505

Epoch 151/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0507

Epoch 152/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 153/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 154/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 155/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0525

Epoch 156/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0516

Epoch 157/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 158/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 159/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0502

Epoch 160/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 161/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0501

Epoch 162/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0501

Epoch 163/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0499

Epoch 164/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 165/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0515

Epoch 166/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0523

Epoch 167/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 168/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0506

Epoch 169/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0507

Epoch 170/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0502

Epoch 171/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0503

Epoch 172/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 173/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0503

Epoch 174/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0503

Epoch 175/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 176/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0515

Epoch 177/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 178/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 179/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0505

Epoch 180/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0503

Epoch 181/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0501

Epoch 182/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0504

Epoch 183/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0504

Epoch 184/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 185/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 186/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 187/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 188/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 189/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0507

Epoch 190/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 191/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0508

Epoch 192/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 193/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0506

Epoch 194/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0508

Epoch 195/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0505

Epoch 196/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 197/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0518

Epoch 198/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 199/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 200/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 1/200

3/3 [==============================] - 1s 272ms/step - loss: 0.2181

Epoch 2/200

3/3 [==============================] - 0s 67ms/step - loss: 0.1866

Epoch 3/200

3/3 [==============================] - 0s 65ms/step - loss: 0.1565

Epoch 4/200

3/3 [==============================] - 0s 65ms/step - loss: 0.1144

Epoch 5/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0843

Epoch 6/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0528

Epoch 7/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0548

Epoch 8/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0682

Epoch 9/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0590

Epoch 10/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 11/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0503

Epoch 12/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0533

Epoch 13/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0543

Epoch 14/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0545

Epoch 15/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0522

Epoch 16/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0503

Epoch 17/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0520

Epoch 18/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0525

Epoch 19/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0529

Epoch 20/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 21/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 22/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 23/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 24/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 25/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 26/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0507

Epoch 27/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0526

Epoch 28/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0520

Epoch 29/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0520

Epoch 30/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 31/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 32/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 33/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 34/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 35/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 36/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0516

Epoch 37/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 38/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 39/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 40/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 41/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 42/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 43/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0514

Epoch 44/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 45/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 46/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 47/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 48/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 49/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 50/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0526

Epoch 51/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0518

Epoch 52/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 53/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 54/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 55/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 56/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 57/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 58/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 59/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 60/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 61/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 62/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0514

Epoch 63/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 64/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0527

Epoch 65/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0521

Epoch 66/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0528

Epoch 67/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0511

Epoch 68/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 69/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0517

Epoch 70/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0517

Epoch 71/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 72/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0514

Epoch 73/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 74/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 75/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0523

Epoch 76/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 77/200

3/3 [==============================] - 0s 85ms/step - loss: 0.0512

Epoch 78/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 79/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 80/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 81/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0522

Epoch 82/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0517

Epoch 83/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 84/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 85/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 86/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0523

Epoch 87/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0513

Epoch 88/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 89/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0518

Epoch 90/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 91/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 92/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 93/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 94/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 95/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0507

Epoch 96/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0516

Epoch 97/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0516

Epoch 98/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 99/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 100/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 101/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 102/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 103/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 104/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0518

Epoch 105/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 106/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0515

Epoch 107/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0524

Epoch 108/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 109/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 110/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 111/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 112/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 113/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0522

Epoch 114/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 115/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 116/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 117/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 118/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 119/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 120/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 121/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0518

Epoch 122/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 123/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 124/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 125/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 126/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 127/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0505

Epoch 128/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 129/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 130/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0525

Epoch 131/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0523

Epoch 132/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 133/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 134/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 135/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0517

Epoch 136/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 137/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0518

Epoch 138/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 139/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0512

Epoch 140/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 141/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 142/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 143/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 144/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 145/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 146/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 147/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 148/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 149/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0509

Epoch 150/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0524

Epoch 151/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0511

Epoch 152/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 153/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 154/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 155/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0506

Epoch 156/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 157/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0526

Epoch 158/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0517

Epoch 159/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 160/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 161/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 162/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0507

Epoch 163/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 164/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 165/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0512

Epoch 166/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 167/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0509

Epoch 168/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 169/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 170/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 171/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 172/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 173/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 174/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 175/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 176/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0517

Epoch 177/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0511

Epoch 178/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 179/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0506

Epoch 180/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 181/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 182/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0524

Epoch 183/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0516

Epoch 184/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 185/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 186/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0508

Epoch 187/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 188/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 189/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 190/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 191/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0516

Epoch 192/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 193/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 194/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 195/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 196/200

3/3 [==============================] - 0s 83ms/step - loss: 0.0507

Epoch 197/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0509

Epoch 198/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 199/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 200/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0504

Epoch 1/200

3/3 [==============================] - 1s 312ms/step - loss: 0.2104

Epoch 2/200

3/3 [==============================] - 0s 68ms/step - loss: 0.1812

Epoch 3/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1520

Epoch 4/200

3/3 [==============================] - 0s 80ms/step - loss: 0.1210

Epoch 5/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0830

Epoch 6/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0549

Epoch 7/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0606

Epoch 8/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0674

Epoch 9/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0586

Epoch 10/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0510

Epoch 11/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0532

Epoch 12/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0540

Epoch 13/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0539

Epoch 14/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0517

Epoch 15/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0533

Epoch 16/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0504

Epoch 17/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 18/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 19/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 20/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 21/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 22/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 23/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 24/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 25/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 26/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 27/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 28/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0518

Epoch 29/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0517

Epoch 30/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 31/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 32/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 33/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 34/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 35/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 36/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 37/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0523

Epoch 38/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 39/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0515

Epoch 40/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 41/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 42/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 43/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 44/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0523

Epoch 45/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0519

Epoch 46/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 47/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0528

Epoch 48/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 49/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 50/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0514

Epoch 51/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 52/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 53/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 54/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0518

Epoch 55/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 56/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0526

Epoch 57/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 58/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 59/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 60/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 61/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 62/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 63/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 64/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0516

Epoch 65/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 66/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0514

Epoch 67/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 68/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 69/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0527

Epoch 70/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0521

Epoch 71/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0519

Epoch 72/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 73/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 74/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 75/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 76/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 77/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 78/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 79/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 80/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 81/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0509

Epoch 82/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 83/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 84/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 85/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0516

Epoch 86/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 87/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 88/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 89/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 90/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 91/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 92/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 93/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 94/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 95/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 96/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 97/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 98/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 99/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 100/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 101/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 102/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 103/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 104/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0516

Epoch 105/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 106/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 107/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 108/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0521

Epoch 109/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 110/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 111/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 112/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 113/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0523

Epoch 114/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0523

Epoch 115/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0521

Epoch 116/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 117/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0522

Epoch 118/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0511

Epoch 119/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0509

Epoch 120/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 121/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 122/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 123/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 124/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 125/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 126/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 127/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 128/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0520

Epoch 129/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0513

Epoch 130/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 131/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 132/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 133/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 134/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0522

Epoch 135/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 136/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 137/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 138/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0508

Epoch 139/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0519

Epoch 140/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 141/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 142/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 143/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0517

Epoch 144/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 145/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 146/200

3/3 [==============================] - 0s 88ms/step - loss: 0.0514

Epoch 147/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0527

Epoch 148/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0527

Epoch 149/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0525

Epoch 150/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0523

Epoch 151/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 152/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 153/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0507

Epoch 154/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 155/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 156/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0518

Epoch 157/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 158/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 159/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0524

Epoch 160/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 161/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 162/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 163/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0510

Epoch 164/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 165/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 166/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0508

Epoch 167/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 168/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0512

Epoch 169/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0519

Epoch 170/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 171/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 172/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 173/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 174/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 175/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 176/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 177/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 178/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0517

Epoch 179/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 180/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 181/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0512

Epoch 182/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 183/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 184/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 185/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0507

Epoch 186/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0507

Epoch 187/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 188/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 189/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 190/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 191/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0505

Epoch 192/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0503

Epoch 193/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 194/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 195/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0525

Epoch 196/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 197/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 198/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 199/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 200/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0506

Epoch 1/200

3/3 [==============================] - 1s 295ms/step - loss: 0.2203

Epoch 2/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1959

Epoch 3/200

3/3 [==============================] - 0s 78ms/step - loss: 0.1689

Epoch 4/200

3/3 [==============================] - 0s 62ms/step - loss: 0.1430

Epoch 5/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1075

Epoch 6/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0683

Epoch 7/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0452

Epoch 8/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0680

Epoch 9/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0673

Epoch 10/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0532

Epoch 11/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0555

Epoch 12/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0559

Epoch 13/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0553

Epoch 14/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0539

Epoch 15/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 16/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 17/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 18/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0513

Epoch 19/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0521

Epoch 20/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0523

Epoch 21/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0522

Epoch 22/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 23/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 24/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 25/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 26/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 27/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 28/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 29/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 30/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 31/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0507

Epoch 32/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0516

Epoch 33/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 34/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 35/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0517

Epoch 36/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 37/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 38/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 39/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 40/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0515

Epoch 41/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 42/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 43/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 44/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 45/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 46/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0512

Epoch 47/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 48/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 49/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 50/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 51/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0516

Epoch 52/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 53/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 54/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 55/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 56/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0509

Epoch 57/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 58/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 59/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 60/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 61/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 62/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0511

Epoch 63/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 64/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 65/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 66/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0518

Epoch 67/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 68/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0517

Epoch 69/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 70/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 71/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 72/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 73/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0521

Epoch 74/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 75/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 76/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0514

Epoch 77/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 78/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 79/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 80/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 81/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0512

Epoch 82/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 83/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0514

Epoch 84/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0519

Epoch 85/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0516

Epoch 86/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0519

Epoch 87/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 88/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 89/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 90/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0505

Epoch 91/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 92/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 93/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 94/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0515

Epoch 95/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0514

Epoch 96/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 97/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 98/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 99/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 100/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0507

Epoch 101/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 102/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 103/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 104/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 105/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 106/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 107/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 108/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 109/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 110/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0519

Epoch 111/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0522

Epoch 112/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 113/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0508

Epoch 114/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 115/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 116/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0506

Epoch 117/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 118/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 119/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 120/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0516

Epoch 121/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 122/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0510

Epoch 123/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0507

Epoch 124/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0506

Epoch 125/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 126/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 127/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 128/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 129/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 130/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0517

Epoch 131/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0516

Epoch 132/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 133/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0507

Epoch 134/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 135/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 136/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 137/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0505

Epoch 138/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 139/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0513

Epoch 140/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 141/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 142/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0506

Epoch 143/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0508

Epoch 144/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 145/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 146/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 147/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 148/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 149/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 150/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 151/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 152/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 153/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0506

Epoch 154/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0504

Epoch 155/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 156/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 157/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 158/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 159/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 160/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0503

Epoch 161/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 162/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0505

Epoch 163/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 164/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 165/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0496

Epoch 166/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0551

Epoch 167/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0498

Epoch 168/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0499

Epoch 169/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 170/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 171/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 172/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 173/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 174/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 175/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0502

Epoch 176/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0504

Epoch 177/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0502

Epoch 178/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0500

Epoch 179/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0500

Epoch 180/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0504

Epoch 181/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 182/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 183/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0503

Epoch 184/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0507

Epoch 185/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0504

Epoch 186/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0499

Epoch 187/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0504

Epoch 188/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0509

Epoch 189/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 190/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0502

Epoch 191/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0500

Epoch 192/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0501

Epoch 193/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0506

Epoch 194/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0507

Epoch 195/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0503

Epoch 196/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0500

Epoch 197/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 198/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0509

Epoch 199/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0503

Epoch 200/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 1/200

3/3 [==============================] - 1s 273ms/step - loss: 0.2291

Epoch 2/200

3/3 [==============================] - 0s 68ms/step - loss: 0.1716

Epoch 3/200

3/3 [==============================] - 0s 62ms/step - loss: 0.1225

Epoch 4/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0898

Epoch 5/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0633

Epoch 6/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0494

Epoch 7/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0588

Epoch 8/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0599

Epoch 9/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0537

Epoch 10/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0522

Epoch 11/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0525

Epoch 12/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0522

Epoch 13/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0511

Epoch 14/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 15/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0504

Epoch 16/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 17/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 18/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0519

Epoch 19/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0519

Epoch 20/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 21/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 22/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 23/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0512

Epoch 24/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0513

Epoch 25/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 26/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0511

Epoch 27/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 28/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0509

Epoch 29/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 30/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 31/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0513

Epoch 32/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 33/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 34/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 35/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 36/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 37/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 38/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 39/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 40/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 41/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 42/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0508

Epoch 43/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0520

Epoch 44/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0522

Epoch 45/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0518

Epoch 46/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 47/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0507

Epoch 48/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0507

Epoch 49/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 50/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 51/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 52/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 53/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 54/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 55/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 56/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0517

Epoch 57/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 58/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0525

Epoch 59/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 60/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 61/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0519

Epoch 62/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0511

Epoch 63/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 64/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 65/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0516

Epoch 66/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 67/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 68/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0521

Epoch 69/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 70/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0517

Epoch 71/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 72/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 73/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 74/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 75/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 76/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 77/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 78/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0519

Epoch 79/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 80/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 81/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 82/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 83/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0518

Epoch 84/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 85/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 86/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 87/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 88/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0518

Epoch 89/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0520

Epoch 90/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 91/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 92/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0514

Epoch 93/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 94/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 95/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 96/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0511

Epoch 97/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 98/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 99/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0506

Epoch 100/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 101/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0506

Epoch 102/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0508

Epoch 103/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 104/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 105/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 106/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 107/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0511

Epoch 108/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 109/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 110/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0524

Epoch 111/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 112/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 113/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0504

Epoch 114/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0526

Epoch 115/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 116/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0519

Epoch 117/200

3/3 [==============================] - 0s 83ms/step - loss: 0.0510

Epoch 118/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0505

Epoch 119/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0521

Epoch 120/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 121/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0514

Epoch 122/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0506

Epoch 123/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0503

Epoch 124/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0503

Epoch 125/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0524

Epoch 126/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0518

Epoch 127/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 128/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 129/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0506

Epoch 130/200

3/3 [==============================] - 0s 56ms/step - loss: 0.0502

Epoch 131/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 132/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0507

Epoch 133/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0517

Epoch 134/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 135/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 136/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 137/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 138/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0505

Epoch 139/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0507

Epoch 140/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0505

Epoch 141/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 142/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0502

Epoch 143/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0500

Epoch 144/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0515

Epoch 145/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0520

Epoch 146/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 147/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0520

Epoch 148/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 149/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 150/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 151/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 152/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 153/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0517

Epoch 154/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0515

Epoch 155/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0508

Epoch 156/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0515

Epoch 157/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0504

Epoch 158/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0504

Epoch 159/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 160/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0505

Epoch 161/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0507

Epoch 162/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0504

Epoch 163/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 164/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 165/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0503

Epoch 166/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 167/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0506

Epoch 168/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0503

Epoch 169/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0502

Epoch 170/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0500

Epoch 171/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0499

Epoch 172/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 173/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 174/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0501

Epoch 175/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0503

Epoch 176/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 177/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0502

Epoch 178/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 179/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 180/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 181/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0500

Epoch 182/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0503

Epoch 183/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0498

Epoch 184/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0499

Epoch 185/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0497

Epoch 186/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0506

Epoch 187/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0505

Epoch 188/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0501

Epoch 189/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0502

Epoch 190/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0504

Epoch 191/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0501

Epoch 192/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 193/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0497

Epoch 194/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0494

Epoch 195/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0493

Epoch 196/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0494

Epoch 197/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0499

Epoch 198/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0504

Epoch 199/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 200/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0503

Epoch 1/200

3/3 [==============================] - 1s 274ms/step - loss: 0.2310

Epoch 2/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1959

Epoch 3/200

3/3 [==============================] - 0s 64ms/step - loss: 0.1671

Epoch 4/200

3/3 [==============================] - 0s 61ms/step - loss: 0.1345

Epoch 5/200

3/3 [==============================] - 0s 63ms/step - loss: 0.1039

Epoch 6/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0749

Epoch 7/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0496

Epoch 8/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0519

Epoch 9/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0679

Epoch 10/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0599

Epoch 11/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0502

Epoch 12/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0497

Epoch 13/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0537

Epoch 14/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0537

Epoch 15/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0527

Epoch 16/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 17/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0518

Epoch 18/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0505

Epoch 19/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 20/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0523

Epoch 21/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0524

Epoch 22/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0517

Epoch 23/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 24/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 25/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 26/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 27/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 28/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0510

Epoch 29/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0521

Epoch 30/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 31/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 32/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0524

Epoch 33/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0513

Epoch 34/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0513

Epoch 35/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 36/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0515

Epoch 37/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 38/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 39/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 40/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 41/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0516

Epoch 42/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0519

Epoch 43/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 44/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0525

Epoch 45/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 46/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 47/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 48/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 49/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 50/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 51/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0517

Epoch 52/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0519

Epoch 53/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0516

Epoch 54/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0520

Epoch 55/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 56/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0512

Epoch 57/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0514

Epoch 58/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0510

Epoch 59/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 60/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 61/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 62/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 63/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0526

Epoch 64/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0520

Epoch 65/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0513

Epoch 66/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0525

Epoch 67/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 68/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 69/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 70/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 71/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 72/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 73/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 74/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 75/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 76/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 77/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 78/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0521

Epoch 79/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 80/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 81/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 82/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 83/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0508

Epoch 84/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 85/200

3/3 [==============================] - 0s 58ms/step - loss: 0.0512

Epoch 86/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 87/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 88/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0520

Epoch 89/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 90/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 91/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 92/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 93/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 94/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0515

Epoch 95/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0522

Epoch 96/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 97/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 98/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 99/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 100/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 101/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 102/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 103/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 104/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 105/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 106/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 107/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 108/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 109/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 110/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0503

Epoch 111/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0505

Epoch 112/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 113/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 114/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0514

Epoch 115/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 116/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0516

Epoch 117/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 118/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 119/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 120/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 121/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 122/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0514

Epoch 123/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0512

Epoch 124/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 125/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 126/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0506

Epoch 127/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 128/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 129/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 130/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 131/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0511

Epoch 132/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0516

Epoch 133/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 134/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0511

Epoch 135/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0507

Epoch 136/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 137/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 138/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 139/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 140/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 141/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 142/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0506

Epoch 143/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 144/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 145/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 146/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 147/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0507

Epoch 148/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 149/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0505

Epoch 150/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 151/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 152/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0517

Epoch 153/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 154/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 155/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0517

Epoch 156/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 157/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0516

Epoch 158/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 159/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 160/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 161/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 162/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0506

Epoch 163/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 164/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 165/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0508

Epoch 166/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0507

Epoch 167/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 168/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 169/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0507

Epoch 170/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0504

Epoch 171/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0517

Epoch 172/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0512

Epoch 173/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 174/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0505

Epoch 175/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 176/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 177/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0504

Epoch 178/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0500

Epoch 179/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0503

Epoch 180/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0523

Epoch 181/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0516

Epoch 182/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 183/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0502

Epoch 184/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 185/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0512

Epoch 186/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 187/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 188/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 189/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0507

Epoch 190/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0507

Epoch 191/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 192/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 193/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0505

Epoch 194/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0501

Epoch 195/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0515

Epoch 196/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 197/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0508

Epoch 198/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0508

Epoch 199/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0502

Epoch 200/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0501

Epoch 1/200

3/3 [==============================] - 1s 272ms/step - loss: 0.2198

Epoch 2/200

3/3 [==============================] - 0s 65ms/step - loss: 0.1847

Epoch 3/200

3/3 [==============================] - 0s 67ms/step - loss: 0.1474

Epoch 4/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1176

Epoch 5/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0807

Epoch 6/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0589

Epoch 7/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0582

Epoch 8/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0623

Epoch 9/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0576

Epoch 10/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0534

Epoch 11/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0505

Epoch 12/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0528

Epoch 13/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0520

Epoch 14/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 15/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0527

Epoch 16/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 17/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 18/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 19/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0514

Epoch 20/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0517

Epoch 21/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0523

Epoch 22/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 23/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 24/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 25/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0513

Epoch 26/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0521

Epoch 27/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 28/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 29/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 30/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0512

Epoch 31/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 32/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0517

Epoch 33/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 34/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0513

Epoch 35/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 36/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 37/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 38/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0518

Epoch 39/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 40/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 41/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0507

Epoch 42/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 43/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0526

Epoch 44/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 45/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0520

Epoch 46/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0516

Epoch 47/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 48/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 49/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0510

Epoch 50/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0517

Epoch 51/200

3/3 [==============================] - 0s 79ms/step - loss: 0.0514

Epoch 52/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 53/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 54/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0507

Epoch 55/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0509

Epoch 56/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0509

Epoch 57/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0516

Epoch 58/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0519

Epoch 59/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 60/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 61/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0518

Epoch 62/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0513

Epoch 63/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 64/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 65/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 66/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 67/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 68/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 69/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 70/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 71/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 72/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 73/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0516

Epoch 74/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0517

Epoch 75/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 76/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 77/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 78/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0513

Epoch 79/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 80/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 81/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0509

Epoch 82/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 83/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0519

Epoch 84/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0523

Epoch 85/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 86/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 87/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 88/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0510

Epoch 89/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0508

Epoch 90/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0518

Epoch 91/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 92/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0514

Epoch 93/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0520

Epoch 94/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 95/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0511

Epoch 96/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0510

Epoch 97/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0508

Epoch 98/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 99/200

3/3 [==============================] - 0s 57ms/step - loss: 0.0510

Epoch 100/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0508

Epoch 101/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 102/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0510

Epoch 103/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0513

Epoch 104/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0518

Epoch 105/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 106/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 107/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 108/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0519

Epoch 109/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 110/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 111/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0511

Epoch 112/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 113/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 114/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0519

Epoch 115/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 116/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 117/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0508

Epoch 118/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 119/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 120/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 121/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 122/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0514

Epoch 123/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0515

Epoch 124/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0507

Epoch 125/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 126/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0509

Epoch 127/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 128/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0514

Epoch 129/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0518

Epoch 130/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0517

Epoch 131/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 132/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0505

Epoch 133/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0505

Epoch 134/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0506

Epoch 135/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 136/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 137/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 138/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0506

Epoch 139/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0507

Epoch 140/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 141/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0509

Epoch 142/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0516

Epoch 143/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 144/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0509

Epoch 145/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0506

Epoch 146/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 147/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0505

Epoch 148/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0503

Epoch 149/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0502

Epoch 150/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0502

Epoch 151/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0504

Epoch 152/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0520

Epoch 153/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0519

Epoch 154/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0528

Epoch 155/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 156/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0505

Epoch 157/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 158/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 159/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0507

Epoch 160/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0516

Epoch 161/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 162/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 163/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0511

Epoch 164/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0512

Epoch 165/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 166/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 167/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0504

Epoch 168/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 169/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0504

Epoch 170/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0505

Epoch 171/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 172/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0502

Epoch 173/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0501

Epoch 174/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0503

Epoch 175/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0501

Epoch 176/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0503

Epoch 177/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0501

Epoch 178/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 179/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0506

Epoch 180/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 181/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 182/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 183/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0504

Epoch 184/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0498

Epoch 185/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0503

Epoch 186/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0504

Epoch 187/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0502

Epoch 188/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0501

Epoch 189/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0503

Epoch 190/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0501

Epoch 191/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 192/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0506

Epoch 193/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0503

Epoch 194/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0502

Epoch 195/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0506

Epoch 196/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0510

Epoch 197/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0511

Epoch 198/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 199/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 200/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 1/200

3/3 [==============================] - 1s 304ms/step - loss: 0.2277

Epoch 2/200

3/3 [==============================] - 0s 68ms/step - loss: 0.2074

Epoch 3/200

3/3 [==============================] - 0s 69ms/step - loss: 0.1868

Epoch 4/200

3/3 [==============================] - 0s 66ms/step - loss: 0.1625

Epoch 5/200

3/3 [==============================] - 0s 70ms/step - loss: 0.1386

Epoch 6/200

3/3 [==============================] - 0s 67ms/step - loss: 0.1108

Epoch 7/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0705

Epoch 8/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0471

Epoch 9/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0739

Epoch 10/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0717

Epoch 11/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0555

Epoch 12/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0526

Epoch 13/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0527

Epoch 14/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0551

Epoch 15/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0548

Epoch 16/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0523

Epoch 17/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0504

Epoch 18/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0522

Epoch 19/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0524

Epoch 20/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0529

Epoch 21/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0527

Epoch 22/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 23/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0522

Epoch 24/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0510

Epoch 25/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0513

Epoch 26/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 27/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0510

Epoch 28/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 29/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 30/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0511

Epoch 31/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0517

Epoch 32/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0513

Epoch 33/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 34/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 35/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 36/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0514

Epoch 37/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0514

Epoch 38/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 39/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 40/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 41/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 42/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 43/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 44/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0508

Epoch 45/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0515

Epoch 46/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 47/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 48/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 49/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 50/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 51/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0521

Epoch 52/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0521

Epoch 53/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 54/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 55/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0517

Epoch 56/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0514

Epoch 57/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0513

Epoch 58/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 59/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 60/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 61/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 62/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 63/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0512

Epoch 64/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 65/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0513

Epoch 66/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0522

Epoch 67/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 68/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 69/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0512

Epoch 70/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0508

Epoch 71/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0524

Epoch 72/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0525

Epoch 73/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0524

Epoch 74/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0512

Epoch 75/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0510

Epoch 76/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 77/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0517

Epoch 78/200

3/3 [==============================] - 0s 60ms/step - loss: 0.0510

Epoch 79/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0518

Epoch 80/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0512

Epoch 81/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 82/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0519

Epoch 83/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0514

Epoch 84/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0514

Epoch 85/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0519

Epoch 86/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0510

Epoch 87/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 88/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 89/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0519

Epoch 90/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0511

Epoch 91/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 92/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0517

Epoch 93/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0516

Epoch 94/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 95/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0510

Epoch 96/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0523

Epoch 97/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 98/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0511

Epoch 99/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 100/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 101/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0518

Epoch 102/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 103/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0511

Epoch 104/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 105/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0512

Epoch 106/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0513

Epoch 107/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 108/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 109/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 110/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0508

Epoch 111/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0506

Epoch 112/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0508

Epoch 113/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0523

Epoch 114/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0523

Epoch 115/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0511

Epoch 116/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0510

Epoch 117/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0513

Epoch 118/200

3/3 [==============================] - 0s 85ms/step - loss: 0.0509

Epoch 119/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 120/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0511

Epoch 121/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0507

Epoch 122/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0507

Epoch 123/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 124/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0513

Epoch 125/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0515

Epoch 126/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0514

Epoch 127/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0514

Epoch 128/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 129/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0514

Epoch 130/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 131/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 132/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 133/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0509

Epoch 134/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0510

Epoch 135/200

3/3 [==============================] - 0s 59ms/step - loss: 0.0510

Epoch 136/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0512

Epoch 137/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0507

Epoch 138/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0514

Epoch 139/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0511

Epoch 140/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0512

Epoch 141/200

3/3 [==============================] - 0s 75ms/step - loss: 0.0516

Epoch 142/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 143/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 144/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0515

Epoch 145/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0510

Epoch 146/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 147/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0507

Epoch 148/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0507

Epoch 149/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0512

Epoch 150/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 151/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 152/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0521

Epoch 153/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

Epoch 154/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0512

Epoch 155/200

3/3 [==============================] - 0s 86ms/step - loss: 0.0509

Epoch 156/200

3/3 [==============================] - 0s 78ms/step - loss: 0.0517

Epoch 157/200

3/3 [==============================] - 0s 76ms/step - loss: 0.0509

Epoch 158/200

3/3 [==============================] - 0s 73ms/step - loss: 0.0515

Epoch 159/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0515

Epoch 160/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0519

Epoch 161/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0510

Epoch 162/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0507

Epoch 163/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0509

Epoch 164/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0506

Epoch 165/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0513

Epoch 166/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0510

Epoch 167/200

3/3 [==============================] - 0s 82ms/step - loss: 0.0511

Epoch 168/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0514

Epoch 169/200

3/3 [==============================] - 0s 70ms/step - loss: 0.0508

Epoch 170/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0518

Epoch 171/200

3/3 [==============================] - 0s 62ms/step - loss: 0.0516

Epoch 172/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0515

Epoch 173/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0511

Epoch 174/200

3/3 [==============================] - 0s 81ms/step - loss: 0.0509

Epoch 175/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0508

Epoch 176/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0509

Epoch 177/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 178/200

3/3 [==============================] - 0s 77ms/step - loss: 0.0506

Epoch 179/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0507

Epoch 180/200

3/3 [==============================] - 0s 80ms/step - loss: 0.0514

Epoch 181/200

3/3 [==============================] - 0s 74ms/step - loss: 0.0515

Epoch 182/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0509

Epoch 183/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 184/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0515

Epoch 185/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0513

Epoch 186/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0507

Epoch 187/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 188/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0509

Epoch 189/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0511

Epoch 190/200

3/3 [==============================] - 0s 63ms/step - loss: 0.0509

Epoch 191/200

3/3 [==============================] - 0s 61ms/step - loss: 0.0506

Epoch 192/200

3/3 [==============================] - 0s 66ms/step - loss: 0.0511

Epoch 193/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 194/200

3/3 [==============================] - 0s 72ms/step - loss: 0.0512

Epoch 195/200

3/3 [==============================] - 0s 64ms/step - loss: 0.0520

Epoch 196/200

3/3 [==============================] - 0s 65ms/step - loss: 0.0513

Epoch 197/200

3/3 [==============================] - 0s 69ms/step - loss: 0.0523

Epoch 198/200

3/3 [==============================] - 0s 71ms/step - loss: 0.0511

Epoch 199/200

3/3 [==============================] - 0s 68ms/step - loss: 0.0508

Epoch 200/200

3/3 [==============================] - 0s 67ms/step - loss: 0.0508

[[1053.45296748 1105.42930902 1089.93646095 1057.60278368 1094.10231684

  1060.13253583 1073.65492227 1068.52087102 1123.15011519 1035.32847745

  1088.42356151 1075.12384708 1050.5367015  1085.68120253 1086.44475708

  1006.33654895 1135.58912182 1095.86415466 1064.91166824 1050.15099503]

 [1084.68291927 1142.75165753 1122.05327925 1087.94457716 1134.15017726

  1112.94525648 1115.73880258 1103.08600498 1157.51098512 1085.23558938

  1124.19145806 1106.8316529  1083.41567491 1116.02724815 1111.99326231

  1099.94878937 1182.22289593 1126.09017161 1100.91117167 1082.67429606]

 [1082.25747903 1140.44258588 1128.48697721 1086.81227086 1133.0225537

  1110.48859802 1112.94670975 1101.53171449 1158.14170078 1083.02668515

  1122.16254301 1105.45412212 1084.14801125 1115.53238557 1113.26255199

  1097.1272007  1181.5845372  1126.42146149 1099.77671239 1079.19717864]

 [1082.21732594 1142.69201997 1134.64579339 1088.10179857 1134.60596325

  1111.55141687 1114.56785028 1103.14219777 1162.62958874 1083.5579331

  1123.86985659 1107.11896816 1086.57576595 1117.84339489 1110.41335135

  1097.41209385 1185.83904207 1127.84237484 1102.11581812 1078.84661958]

 [1090.04050373 1155.51344977 1145.90652758 1096.10609585 1145.74720702

  1120.82737212 1126.8335958  1113.71893005 1175.94082162 1091.21463168

  1135.22268453 1116.52830055 1094.66133825 1127.09938125 1118.46743631

  1107.66539462 1201.25513639 1138.2263077  1112.59351329 1087.41435187]

 [1072.40770064 1137.88193846 1134.56064301 1080.4422473  1132.21986872

  1104.06792559 1108.03538433 1095.82023385 1163.51693968 1074.61773518

  1116.77460152 1100.99648353 1078.79301037 1113.73970631 1109.1072457

  1086.50294138 1185.34654777 1126.34955194 1094.95312094 1068.32468066]

 [1075.37563816 1146.01342307 1138.83624709 1084.02512989 1141.48807324

  1109.48913062 1115.14743264 1101.35021823 1173.85490641 1078.43674591

  1123.6799637  1106.43507388 1081.80734462 1119.43288661 1116.64326971

  1091.64603515 1197.42121626 1130.78070887 1101.20774474 1072.07188949]

 [1083.79228504 1161.12670067 1148.24757099 1091.94696801 1151.51342719

  1109.93485142 1126.73945672 1112.84433552 1189.84756892 1077.69622825

  1137.39880962 1116.88246585 1088.96121458 1129.50652116 1122.62753299

  1078.34443687 1213.45004884 1141.00160728 1112.6695135  1081.75384305]

 [1102.14800518 1189.77802764 1164.94404284 1108.28157766 1179.66827685

  1142.66230883 1155.58654346 1134.77077391 1215.28234294 1104.61246819

  1163.52447511 1136.53955508 1104.5569213  1148.07113423 1132.12400726

  1129.09788545 1249.32161141 1161.05091575 1134.58550993 1102.76499558]

 [1094.96237875 1187.34257604 1161.43694517 1100.48552742 1174.06880503

  1137.44186923 1149.85143385 1128.85255331 1212.98661978 1096.70510886

  1159.34672399 1130.20731633 1096.59083942 1142.52462573 1128.16069301

  1121.59512498 1249.16874979 1156.74678468 1127.04431877 1095.52909706]

 [1062.78118633 1152.2323074  1141.09666138 1070.42066106 1141.03799266

  1105.2758015  1111.85665569 1094.60713696 1184.81443862 1065.02007081

  1123.36008462 1099.35758091 1068.04457789 1115.15168478 1108.18388616

  1082.18669979 1215.49075146 1133.45067388 1091.6830126  1059.74682936]

 [1063.64297062 1157.91832905 1146.16004104 1071.99556633 1146.35660817

  1108.27576461 1115.62431784 1097.41047912 1192.80178118 1066.28241713

  1127.50058917 1102.3720228  1069.67395358 1118.77003773 1111.35802539

  1084.71128479 1224.96537299 1136.8590574  1094.74891073 1060.48438668]]

The model expects the input to be in the form:

[samples, timesteps, features]

In this model:

In [0]:

# Creating a matrix the size of the output matrix used during training

final_result = np.zeros((result.shape[0],1))

In [0]:

# Loop to make final predictions (takeing the mean from each repetition's prediction)

for i in range(result.shape[0]):

    final_result[i] = np.mean(result[i,:])

In [0]:

# Final predictions

final_result

Out[0]:

array([[1075.01866591],

       [1114.0202935 ],

       [1113.09119896],

       [1114.77945866],

       [1125.049149  ],

       [1109.22292534],

       [1115.25715392],

       [1123.81426932],

       [1147.96856893],

       [1142.55240456],

       [1111.28993469],

       [1114.89559582]])

In [0]:

# Adjusting shape

final_result = final_result.reshape((12,))

In [0]:

# Final predictions

final_result

Out[0]:

array([1075.01866591, 1114.0202935 , 1113.09119896, 1114.77945866,

       1125.049149  , 1109.22292534, 1115.25715392, 1123.81426932,

       1147.96856893, 1142.55240456, 1111.28993469, 1114.89559582])

In [0]:

# Plot

plt.figure(figsize = (20, 6))

 

# Original Series

plt.plot(sales_technology_monthly_mean.index,

         sales_technology_monthly_mean.values,

         label = 'Observed Values',

         color = 'Blue')

 

# Predictions

plt.plot(sales_technology_monthly_mean[36:].index,

         final_result,

         label = 'Stacked LSTM Model Predictions',

         color = 'Red')

 

plt.title('Stacked LSTM Model Predictions')

plt.xlabel('Data')

plt.ylabel('Sales')

plt.legend()

plt.show()

In [0]:

# Measugin model's performance

lstm_model_performance = performance(testset, final_result)

lstm_model_performance

The prediction MSE is 155874.09

The prediction RMSE is 394.81

The prediction MAPE is 35.56

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Stacked LSTM:

Part 3: https://colab.research.google.com/drive/1s_zYkNY7x3TJw2ApRFGU-C1DfwuhNaZD

Part 2: https://colab.research.google.com/drive/10jJOdDusaRTQfSkKTyj3BM2OGVy_CP3N

This model will use differentiation in the time series, which mean that instead of predicting the value of each month's sales, the model will predict the change in sales from month to month.

Loading Packages

In [1]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.

import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import numpy as np

import pandas as pd

import itertools

from pandas import Series

from pandas.tseries.offsets import DateOffset

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

 

# Predictive modeling imports

import sklearn

import keras

from sklearn.preprocessing import MinMaxScaler

from keras.preprocessing.sequence import TimeseriesGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Activation

from keras.layers import LSTM

from keras.layers import Dropout

from keras import optimizers

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

 

# Graphics formatting imports

m.rcParams['axes.labelsize'] = 14

m.rcParams['xtick.labelsize'] = 12

m.rcParams['ytick.labelsize'] = 12

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 15,7

matplotlib.style.use('ggplot')

%matplotlib inline

Using TensorFlow backend.

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/tableau_superstore_sales.csv')

In [3]:

# Shape

data.shape

Out[3]:

(9994, 21)

In [4]:

# Columns

data.columns

Out[4]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [5]:

# Visualizing data

data.head()

Out[5]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

State

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

California

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

In [6]:

# Statistic summaries

data.describe()

Out[6]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [7]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [0]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [0]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [10]:

# Checking

data.columns

Out[10]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [11]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'Second Class', 'Standard Class', 'Same Day', 'First Class'}

segment {'Home Office', 'Consumer', 'Corporate'}

country {'United States'}

region {'Central', 'East', 'South', 'West'}

category {'Technology', 'Furniture', 'Office Supplies'}

sub_category {'Tables', 'Labels', 'Appliances', 'Fasteners', 'Copiers', 'Phones', 'Art', 'Storage', 'Bookcases', 'Binders', 'Furnishings', 'Envelopes', 'Chairs', 'Supplies', 'Machines', 'Accessories', 'Paper'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [0]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

In [0]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [14]:

# Checking dataset

ts_technology

Out[14]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [0]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [16]:

# Visualizing the series

ts_technology

Out[16]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

In [17]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [18]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [19]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

Adjusting the index type to DateTimeIndex (which characterizes a time series), so that it's possible to aggregate monthly and obtain the mean monthly sales.

In [20]:

# Checking index type

type(sales_technology.index)

Out[20]:

pandas.core.indexes.base.Index

In [0]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [22]:

# Checking index type

type(sales_technology.index)

Out[22]:

pandas.core.indexes.datetimes.DatetimeIndex

In [0]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [24]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[24]:

pandas.core.series.Series

In [25]:

# Checking the data

sales_technology_monthly_mean

Out[25]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [26]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [27]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [28]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

Decomposing the series to analyze its componentes.

In [29]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [0]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [31]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Function to Calculate Accuracy

In [0]:

# Function

def performance(y_true, y_pred):

    mse = ((y_pred - y_true) ** 2).mean()

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    return( print('The prediction MSE is {}'.format(round(mse, 2))+

                  '\nThe prediction RMSE is {}'.format(round(np.sqrt(mse), 2))+

                  '\nThe prediction MAPE is {}'.format(round(mape, 2))))

Integrated LSTM Model

In [0]:

# Convert the time series into a dataset for supervised learning

# This is done by having a dataset where X is a given month's sales and Y is as the following month's sales

def timeseries_to_supervised(data, lag = 1):

    df = pd.DataFrame(data)

    columns = [df.shift(i) for i in range(1, lag + 1)]

    columns.append(df)

    df = pd.concat(columns, axis = 1)

    df.fillna(0, inplace = True)

    return df

In [0]:

# Create a differentiated series to make the time series stationary

def difference(dataset, interval = 1):

    diff = list()

    for i in range(interval, len(dataset)):

        value = dataset[i] - dataset[i - interval]

        diff.append(value)

    return Series(diff)

In [0]:

# Invert the differentiated value

def inverse_difference(history, yhat, interval = 1):

    return yhat + history[-interval]

In [0]:

# Differentiating the time series

raw_values = sales_technology_monthly_mean.values

diff_values = difference(raw_values, 1)

In [0]:

# Converting the time series to a supervised learning dataset

supervised = timeseries_to_supervised(diff_values, 1)

supervised_values = supervised.values

In [0]:

# Creating the training and testing datasets

trainset, testset = supervised_values[0:-12], supervised_values[-12:]

In [0]:

# Normalizing the data applying a scale on the [-1, 1] interval

# This interval was chosen since the differentiated series has both positive and negative values

def scale(train, test):

    scaler = MinMaxScaler(feature_range = (-1, 1))

    scaler = scaler.fit(train)

   

    # Transform the training data

    train = train.reshape(train.shape[0], train.shape[1])

    train_scaled = scaler.transform(train)

   

    # Transform the testing data

    test = test.reshape(test.shape[0], test.shape[1])

    test_scaled = scaler.transform(test)

   

    return scaler, train_scaled, test_scaled

In [0]:

# Reserve the prediction's scale back to the original scale

def invert_scale(scaler, X, value):

    new_row = [x for x in X] + [value]

    array = np.array(new_row)

    array = array.reshape(1, len(array))

    inverted = scaler.inverse_transform(array)

    return inverted[0, -1]

In [0]:

# Scaling the data

scaler, train_scaled, test_scaled = scale(trainset, testset)

In [0]:

# Number of repetitions

n_rep = 20

 

# Number of epochs

num_epochs = 200

 

# Number of inputs

# In a differentiated model the last difference is used to predict the next difference

# Hence n_input = 1

n_input = 1

 

# Length of the output sequency

# In a differentiated model the last difference is used to predict the next difference

# Hence n_output = 1

n_output = 1

 

# This series is univariate, therefore only 1 feature

n_features = 1

 

# Number of time series samples in each batch

size_batch = 10

In [0]:

# Function for the differentiated LSTM model

def train_lstm(train, nb_epoch):

   

    # Adjusting the dataset shape

    X, y = train[:, 0:-1], train[:, -1]

    X = X.reshape(X.shape[0], 1, X.shape[1])

   

    # Starting the model (Keras Sequential())

    lstm_model = Sequential()

   

    # Input LSTM layer

    # Need return_sequences = True since I need the output to be another sequency which I can feed to the stacked layer

    lstm_model.add(LSTM(40, activation = 'tanh', return_sequences = True, input_shape = (n_input, n_features)))

   

    # Stacked LSTM layer

    lstm_model.add(LSTM(40, activation = 'relu'))

 

    # First hidden layer

    lstm_model.add(Dense(50, activation = 'relu'))

   

    # Second hidden layer

    lstm_model.add(Dense(50, activation = 'relu'))

   

    # Output layer

    # Only need 1 neuron since this is a regression problem (aka I'm now merging the information to come up with a final prediction value)

    lstm_model.add(Dense(1))

   

    # Defining the loss function as MSE

    # Defininf the optimization algorithm as ADAM

    adam = optimizers.Adam(learning_rate = 0.001)

    lstm_model.compile(optimizer = adam, loss = 'mean_squared_error')

 

    lstm_model.fit(X, y, epochs = nb_epoch, verbose = 1)

   

    return lstm_model

Training for 5000 epochs

In [44]:

# Training

lstm_model = train_lstm(train_scaled, 5000)

Streaming output truncated to the last 5000 lines.

35/35 [==============================] - 0s 536us/step - loss: 0.1122

Epoch 2502/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1121

Epoch 2503/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1120

Epoch 2504/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1121

Epoch 2505/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1123

Epoch 2506/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1124

Epoch 2507/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1122

Epoch 2508/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1124

Epoch 2509/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1124

Epoch 2510/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1135

Epoch 2511/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1150

Epoch 2512/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1151

Epoch 2513/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1151

Epoch 2514/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1157

Epoch 2515/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1146

Epoch 2516/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1135

Epoch 2517/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1126

Epoch 2518/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1125

Epoch 2519/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1124

Epoch 2520/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1124

Epoch 2521/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1124

Epoch 2522/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1123

Epoch 2523/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1123

Epoch 2524/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1123

Epoch 2525/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1124

Epoch 2526/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1125

Epoch 2527/5000

35/35 [==============================] - 0s 643us/step - loss: 0.1127

Epoch 2528/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1129

Epoch 2529/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1133

Epoch 2530/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1133

Epoch 2531/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1130

Epoch 2532/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1126

Epoch 2533/5000

35/35 [==============================] - 0s 713us/step - loss: 0.1125

Epoch 2534/5000

35/35 [==============================] - 0s 755us/step - loss: 0.1124

Epoch 2535/5000

35/35 [==============================] - 0s 884us/step - loss: 0.1122

Epoch 2536/5000

35/35 [==============================] - 0s 692us/step - loss: 0.1119

Epoch 2537/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1118

Epoch 2538/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1122

Epoch 2539/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1119

Epoch 2540/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1119

Epoch 2541/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1120

Epoch 2542/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1120

Epoch 2543/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1120

Epoch 2544/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1122

Epoch 2545/5000

35/35 [==============================] - 0s 659us/step - loss: 0.1122

Epoch 2546/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1122

Epoch 2547/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1124

Epoch 2548/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1122

Epoch 2549/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1122

Epoch 2550/5000

35/35 [==============================] - 0s 649us/step - loss: 0.1118

Epoch 2551/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1118

Epoch 2552/5000

35/35 [==============================] - 0s 842us/step - loss: 0.1117

Epoch 2553/5000

35/35 [==============================] - 0s 509us/step - loss: 0.1115

Epoch 2554/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1114

Epoch 2555/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1124

Epoch 2556/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1134

Epoch 2557/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1144

Epoch 2558/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1156

Epoch 2559/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1166

Epoch 2560/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1158

Epoch 2561/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1142

Epoch 2562/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1134

Epoch 2563/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1142

Epoch 2564/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1137

Epoch 2565/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1139

Epoch 2566/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1137

Epoch 2567/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1135

Epoch 2568/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1135

Epoch 2569/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1133

Epoch 2570/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1132

Epoch 2571/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1130

Epoch 2572/5000

35/35 [==============================] - 0s 676us/step - loss: 0.1128

Epoch 2573/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1127

Epoch 2574/5000

35/35 [==============================] - 0s 647us/step - loss: 0.1128

Epoch 2575/5000

35/35 [==============================] - 0s 719us/step - loss: 0.1127

Epoch 2576/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1127

Epoch 2577/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1125

Epoch 2578/5000

35/35 [==============================] - 0s 623us/step - loss: 0.1123

Epoch 2579/5000

35/35 [==============================] - 0s 782us/step - loss: 0.1120

Epoch 2580/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1119

Epoch 2581/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1117

Epoch 2582/5000

35/35 [==============================] - 0s 793us/step - loss: 0.1125

Epoch 2583/5000

35/35 [==============================] - 0s 724us/step - loss: 0.1125

Epoch 2584/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1131

Epoch 2585/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1138

Epoch 2586/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1141

Epoch 2587/5000

35/35 [==============================] - 0s 519us/step - loss: 0.1143

Epoch 2588/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1138

Epoch 2589/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1133

Epoch 2590/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1127

Epoch 2591/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1125

Epoch 2592/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1125

Epoch 2593/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1134

Epoch 2594/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1138

Epoch 2595/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1138

Epoch 2596/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1137

Epoch 2597/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1135

Epoch 2598/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1134

Epoch 2599/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1133

Epoch 2600/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1128

Epoch 2601/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1125

Epoch 2602/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1121

Epoch 2603/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1122

Epoch 2604/5000

35/35 [==============================] - 0s 703us/step - loss: 0.1120

Epoch 2605/5000

35/35 [==============================] - 0s 673us/step - loss: 0.1119

Epoch 2606/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1130

Epoch 2607/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1126

Epoch 2608/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1126

Epoch 2609/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1126

Epoch 2610/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1131

Epoch 2611/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1138

Epoch 2612/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1144

Epoch 2613/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1150

Epoch 2614/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1152

Epoch 2615/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1152

Epoch 2616/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1169

Epoch 2617/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1185

Epoch 2618/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1204

Epoch 2619/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1218

Epoch 2620/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1219

Epoch 2621/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1211

Epoch 2622/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1196

Epoch 2623/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1175

Epoch 2624/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1158

Epoch 2625/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1145

Epoch 2626/5000

35/35 [==============================] - 0s 794us/step - loss: 0.1138

Epoch 2627/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1134

Epoch 2628/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1131

Epoch 2629/5000

35/35 [==============================] - 0s 701us/step - loss: 0.1133

Epoch 2630/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1134

Epoch 2631/5000

35/35 [==============================] - 0s 644us/step - loss: 0.1134

Epoch 2632/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1134

Epoch 2633/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1134

Epoch 2634/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1130

Epoch 2635/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1128

Epoch 2636/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1131

Epoch 2637/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1128

Epoch 2638/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1126

Epoch 2639/5000

35/35 [==============================] - 0s 637us/step - loss: 0.1126

Epoch 2640/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1124

Epoch 2641/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1124

Epoch 2642/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1123

Epoch 2643/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1132

Epoch 2644/5000

35/35 [==============================] - 0s 682us/step - loss: 0.1136

Epoch 2645/5000

35/35 [==============================] - 0s 685us/step - loss: 0.1143

Epoch 2646/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1157

Epoch 2647/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1173

Epoch 2648/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1181

Epoch 2649/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1181

Epoch 2650/5000

35/35 [==============================] - 0s 697us/step - loss: 0.1167

Epoch 2651/5000

35/35 [==============================] - 0s 656us/step - loss: 0.1149

Epoch 2652/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1142

Epoch 2653/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1140

Epoch 2654/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1142

Epoch 2655/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1155

Epoch 2656/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1157

Epoch 2657/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1158

Epoch 2658/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1161

Epoch 2659/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1163

Epoch 2660/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1174

Epoch 2661/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1191

Epoch 2662/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1212

Epoch 2663/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1219

Epoch 2664/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1207

Epoch 2665/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1178

Epoch 2666/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1159

Epoch 2667/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1149

Epoch 2668/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1151

Epoch 2669/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1146

Epoch 2670/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1144

Epoch 2671/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1145

Epoch 2672/5000

35/35 [==============================] - 0s 875us/step - loss: 0.1145

Epoch 2673/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1144

Epoch 2674/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1146

Epoch 2675/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1145

Epoch 2676/5000

35/35 [==============================] - 0s 886us/step - loss: 0.1142

Epoch 2677/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1134

Epoch 2678/5000

35/35 [==============================] - 0s 533us/step - loss: 0.1127

Epoch 2679/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1127

Epoch 2680/5000

35/35 [==============================] - 0s 515us/step - loss: 0.1136

Epoch 2681/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1144

Epoch 2682/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1139

Epoch 2683/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1134

Epoch 2684/5000

35/35 [==============================] - 0s 698us/step - loss: 0.1131

Epoch 2685/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1129

Epoch 2686/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1128

Epoch 2687/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1128

Epoch 2688/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1129

Epoch 2689/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1130

Epoch 2690/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1133

Epoch 2691/5000

35/35 [==============================] - 0s 623us/step - loss: 0.1136

Epoch 2692/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1135

Epoch 2693/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1134

Epoch 2694/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1129

Epoch 2695/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1122

Epoch 2696/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1119

Epoch 2697/5000

35/35 [==============================] - 0s 716us/step - loss: 0.1115

Epoch 2698/5000

35/35 [==============================] - 0s 773us/step - loss: 0.1112

Epoch 2699/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1112

Epoch 2700/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1115

Epoch 2701/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1117

Epoch 2702/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1117

Epoch 2703/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1118

Epoch 2704/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1117

Epoch 2705/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1117

Epoch 2706/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1115

Epoch 2707/5000

35/35 [==============================] - 0s 686us/step - loss: 0.1112

Epoch 2708/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1110

Epoch 2709/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1110

Epoch 2710/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1113

Epoch 2711/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1113

Epoch 2712/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1115

Epoch 2713/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1120

Epoch 2714/5000

35/35 [==============================] - 0s 862us/step - loss: 0.1124

Epoch 2715/5000

35/35 [==============================] - 0s 717us/step - loss: 0.1126

Epoch 2716/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1127

Epoch 2717/5000

35/35 [==============================] - 0s 685us/step - loss: 0.1125

Epoch 2718/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1128

Epoch 2719/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1125

Epoch 2720/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1126

Epoch 2721/5000

35/35 [==============================] - 0s 810us/step - loss: 0.1124

Epoch 2722/5000

35/35 [==============================] - 0s 725us/step - loss: 0.1120

Epoch 2723/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1119

Epoch 2724/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1119

Epoch 2725/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1120

Epoch 2726/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1118

Epoch 2727/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1114

Epoch 2728/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1112

Epoch 2729/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1112

Epoch 2730/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1109

Epoch 2731/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1107

Epoch 2732/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1109

Epoch 2733/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1112

Epoch 2734/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1123

Epoch 2735/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1136

Epoch 2736/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1131

Epoch 2737/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1120

Epoch 2738/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1111

Epoch 2739/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1111

Epoch 2740/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1129

Epoch 2741/5000

35/35 [==============================] - 0s 643us/step - loss: 0.1155

Epoch 2742/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1187

Epoch 2743/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1201

Epoch 2744/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1191

Epoch 2745/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1169

Epoch 2746/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1156

Epoch 2747/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1142

Epoch 2748/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1134

Epoch 2749/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1129

Epoch 2750/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1127

Epoch 2751/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1128

Epoch 2752/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1124

Epoch 2753/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1124

Epoch 2754/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1119

Epoch 2755/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1118

Epoch 2756/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1116

Epoch 2757/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1117

Epoch 2758/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1120

Epoch 2759/5000

35/35 [==============================] - 0s 678us/step - loss: 0.1119

Epoch 2760/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1115

Epoch 2761/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1117

Epoch 2762/5000

35/35 [==============================] - 0s 642us/step - loss: 0.1121

Epoch 2763/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1128

Epoch 2764/5000

35/35 [==============================] - 0s 686us/step - loss: 0.1135

Epoch 2765/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1137

Epoch 2766/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1137

Epoch 2767/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1134

Epoch 2768/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1132

Epoch 2769/5000

35/35 [==============================] - 0s 728us/step - loss: 0.1126

Epoch 2770/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1119

Epoch 2771/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1116

Epoch 2772/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1118

Epoch 2773/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1118

Epoch 2774/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1117

Epoch 2775/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1119

Epoch 2776/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1117

Epoch 2777/5000

35/35 [==============================] - 0s 688us/step - loss: 0.1116

Epoch 2778/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1114

Epoch 2779/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1118

Epoch 2780/5000

35/35 [==============================] - 0s 716us/step - loss: 0.1120

Epoch 2781/5000

35/35 [==============================] - 0s 533us/step - loss: 0.1123

Epoch 2782/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1122

Epoch 2783/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1118

Epoch 2784/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1114

Epoch 2785/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1112

Epoch 2786/5000

35/35 [==============================] - 0s 665us/step - loss: 0.1109

Epoch 2787/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1105

Epoch 2788/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1109

Epoch 2789/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1111

Epoch 2790/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1117

Epoch 2791/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1116

Epoch 2792/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1117

Epoch 2793/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1120

Epoch 2794/5000

35/35 [==============================] - 0s 682us/step - loss: 0.1129

Epoch 2795/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1133

Epoch 2796/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1131

Epoch 2797/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1126

Epoch 2798/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1123

Epoch 2799/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1120

Epoch 2800/5000

35/35 [==============================] - 0s 665us/step - loss: 0.1119

Epoch 2801/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1118

Epoch 2802/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1116

Epoch 2803/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1114

Epoch 2804/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1112

Epoch 2805/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1110

Epoch 2806/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1110

Epoch 2807/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1111

Epoch 2808/5000

35/35 [==============================] - 0s 508us/step - loss: 0.1111

Epoch 2809/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1111

Epoch 2810/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1112

Epoch 2811/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1113

Epoch 2812/5000

35/35 [==============================] - 0s 522us/step - loss: 0.1115

Epoch 2813/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1113

Epoch 2814/5000

35/35 [==============================] - 0s 514us/step - loss: 0.1113

Epoch 2815/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1111

Epoch 2816/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1110

Epoch 2817/5000

35/35 [==============================] - 0s 710us/step - loss: 0.1108

Epoch 2818/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1108

Epoch 2819/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1107

Epoch 2820/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1107

Epoch 2821/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1106

Epoch 2822/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1105

Epoch 2823/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1106

Epoch 2824/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1107

Epoch 2825/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1110

Epoch 2826/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1115

Epoch 2827/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1117

Epoch 2828/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1112

Epoch 2829/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1111

Epoch 2830/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1109

Epoch 2831/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1107

Epoch 2832/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1109

Epoch 2833/5000

35/35 [==============================] - 0s 516us/step - loss: 0.1104

Epoch 2834/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1109

Epoch 2835/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1113

Epoch 2836/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1116

Epoch 2837/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1109

Epoch 2838/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1103

Epoch 2839/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1102

Epoch 2840/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1103

Epoch 2841/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1107

Epoch 2842/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1113

Epoch 2843/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1118

Epoch 2844/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1122

Epoch 2845/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1122

Epoch 2846/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1121

Epoch 2847/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1127

Epoch 2848/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1134

Epoch 2849/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1144

Epoch 2850/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1152

Epoch 2851/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1155

Epoch 2852/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1157

Epoch 2853/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1149

Epoch 2854/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1138

Epoch 2855/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1126

Epoch 2856/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1120

Epoch 2857/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1115

Epoch 2858/5000

35/35 [==============================] - 0s 701us/step - loss: 0.1111

Epoch 2859/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1104

Epoch 2860/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1107

Epoch 2861/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1119

Epoch 2862/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1115

Epoch 2863/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1112

Epoch 2864/5000

35/35 [==============================] - 0s 1ms/step - loss: 0.1108

Epoch 2865/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1110

Epoch 2866/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1111

Epoch 2867/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1117

Epoch 2868/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1124

Epoch 2869/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1132

Epoch 2870/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1138

Epoch 2871/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1141

Epoch 2872/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1140

Epoch 2873/5000

35/35 [==============================] - 0s 538us/step - loss: 0.1137

Epoch 2874/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1131

Epoch 2875/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1127

Epoch 2876/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1124

Epoch 2877/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1115

Epoch 2878/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1107

Epoch 2879/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1105

Epoch 2880/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1106

Epoch 2881/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1116

Epoch 2882/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1116

Epoch 2883/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1121

Epoch 2884/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1123

Epoch 2885/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1125

Epoch 2886/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1111

Epoch 2887/5000

35/35 [==============================] - 0s 709us/step - loss: 0.1107

Epoch 2888/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1107

Epoch 2889/5000

35/35 [==============================] - 0s 680us/step - loss: 0.1110

Epoch 2890/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1115

Epoch 2891/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1123

Epoch 2892/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1127

Epoch 2893/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1134

Epoch 2894/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1138

Epoch 2895/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1141

Epoch 2896/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1142

Epoch 2897/5000

35/35 [==============================] - 0s 507us/step - loss: 0.1142

Epoch 2898/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1139

Epoch 2899/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1134

Epoch 2900/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1128

Epoch 2901/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1119

Epoch 2902/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1114

Epoch 2903/5000

35/35 [==============================] - 0s 677us/step - loss: 0.1106

Epoch 2904/5000

35/35 [==============================] - 0s 731us/step - loss: 0.1102

Epoch 2905/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1102

Epoch 2906/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1101

Epoch 2907/5000

35/35 [==============================] - 0s 529us/step - loss: 0.1107

Epoch 2908/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1107

Epoch 2909/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1106

Epoch 2910/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1106

Epoch 2911/5000

35/35 [==============================] - 0s 728us/step - loss: 0.1110

Epoch 2912/5000

35/35 [==============================] - 0s 632us/step - loss: 0.1112

Epoch 2913/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1126

Epoch 2914/5000

35/35 [==============================] - 0s 771us/step - loss: 0.1131

Epoch 2915/5000

35/35 [==============================] - 0s 699us/step - loss: 0.1135

Epoch 2916/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1141

Epoch 2917/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1145

Epoch 2918/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1145

Epoch 2919/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1141

Epoch 2920/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1134

Epoch 2921/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1129

Epoch 2922/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1124

Epoch 2923/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1120

Epoch 2924/5000

35/35 [==============================] - 0s 513us/step - loss: 0.1113

Epoch 2925/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1108

Epoch 2926/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1106

Epoch 2927/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1102

Epoch 2928/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1112

Epoch 2929/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1115

Epoch 2930/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1120

Epoch 2931/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1125

Epoch 2932/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1140

Epoch 2933/5000

35/35 [==============================] - 0s 759us/step - loss: 0.1143

Epoch 2934/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1136

Epoch 2935/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1127

Epoch 2936/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1117

Epoch 2937/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1112

Epoch 2938/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1105

Epoch 2939/5000

35/35 [==============================] - 0s 668us/step - loss: 0.1100

Epoch 2940/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1103

Epoch 2941/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1106

Epoch 2942/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1113

Epoch 2943/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1108

Epoch 2944/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1105

Epoch 2945/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1099

Epoch 2946/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1098

Epoch 2947/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1099

Epoch 2948/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1101

Epoch 2949/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1103

Epoch 2950/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1109

Epoch 2951/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1114

Epoch 2952/5000

35/35 [==============================] - 0s 927us/step - loss: 0.1124

Epoch 2953/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1129

Epoch 2954/5000

35/35 [==============================] - 0s 713us/step - loss: 0.1130

Epoch 2955/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1133

Epoch 2956/5000

35/35 [==============================] - 0s 532us/step - loss: 0.1128

Epoch 2957/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1120

Epoch 2958/5000

35/35 [==============================] - 0s 774us/step - loss: 0.1116

Epoch 2959/5000

35/35 [==============================] - 0s 497us/step - loss: 0.1113

Epoch 2960/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1111

Epoch 2961/5000

35/35 [==============================] - 0s 678us/step - loss: 0.1109

Epoch 2962/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1110

Epoch 2963/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1111

Epoch 2964/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1115

Epoch 2965/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1112

Epoch 2966/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1112

Epoch 2967/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1110

Epoch 2968/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1118

Epoch 2969/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1118

Epoch 2970/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1121

Epoch 2971/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1122

Epoch 2972/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1124

Epoch 2973/5000

35/35 [==============================] - 0s 753us/step - loss: 0.1118

Epoch 2974/5000

35/35 [==============================] - 0s 783us/step - loss: 0.1120

Epoch 2975/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1113

Epoch 2976/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1103

Epoch 2977/5000

35/35 [==============================] - 0s 702us/step - loss: 0.1096

Epoch 2978/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1094

Epoch 2979/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1101

Epoch 2980/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1111

Epoch 2981/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1121

Epoch 2982/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1141

Epoch 2983/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1135

Epoch 2984/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1127

Epoch 2985/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1123

Epoch 2986/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1118

Epoch 2987/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1108

Epoch 2988/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1103

Epoch 2989/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1098

Epoch 2990/5000

35/35 [==============================] - 0s 500us/step - loss: 0.1096

Epoch 2991/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1097

Epoch 2992/5000

35/35 [==============================] - 0s 522us/step - loss: 0.1097

Epoch 2993/5000

35/35 [==============================] - 0s 709us/step - loss: 0.1100

Epoch 2994/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1099

Epoch 2995/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1099

Epoch 2996/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1098

Epoch 2997/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1097

Epoch 2998/5000

35/35 [==============================] - 0s 722us/step - loss: 0.1098

Epoch 2999/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1097

Epoch 3000/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1099

Epoch 3001/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1099

Epoch 3002/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1100

Epoch 3003/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1101

Epoch 3004/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1100

Epoch 3005/5000

35/35 [==============================] - 0s 749us/step - loss: 0.1097

Epoch 3006/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1097

Epoch 3007/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1094

Epoch 3008/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1092

Epoch 3009/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1096

Epoch 3010/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1096

Epoch 3011/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1097

Epoch 3012/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1098

Epoch 3013/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1097

Epoch 3014/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1096

Epoch 3015/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1097

Epoch 3016/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1098

Epoch 3017/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1100

Epoch 3018/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1103

Epoch 3019/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1105

Epoch 3020/5000

35/35 [==============================] - 0s 510us/step - loss: 0.1109

Epoch 3021/5000

35/35 [==============================] - 0s 810us/step - loss: 0.1121

Epoch 3022/5000

35/35 [==============================] - 0s 647us/step - loss: 0.1131

Epoch 3023/5000

35/35 [==============================] - 0s 668us/step - loss: 0.1129

Epoch 3024/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1121

Epoch 3025/5000

35/35 [==============================] - 0s 526us/step - loss: 0.1113

Epoch 3026/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1101

Epoch 3027/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1096

Epoch 3028/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1091

Epoch 3029/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1093

Epoch 3030/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1092

Epoch 3031/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1096

Epoch 3032/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1098

Epoch 3033/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1104

Epoch 3034/5000

35/35 [==============================] - 0s 692us/step - loss: 0.1100

Epoch 3035/5000

35/35 [==============================] - 0s 647us/step - loss: 0.1094

Epoch 3036/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1095

Epoch 3037/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1095

Epoch 3038/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1093

Epoch 3039/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1093

Epoch 3040/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1098

Epoch 3041/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1109

Epoch 3042/5000

35/35 [==============================] - 0s 723us/step - loss: 0.1118

Epoch 3043/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1123

Epoch 3044/5000

35/35 [==============================] - 0s 678us/step - loss: 0.1119

Epoch 3045/5000

35/35 [==============================] - 0s 827us/step - loss: 0.1109

Epoch 3046/5000

35/35 [==============================] - 0s 660us/step - loss: 0.1105

Epoch 3047/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1112

Epoch 3048/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1118

Epoch 3049/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1115

Epoch 3050/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1113

Epoch 3051/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1106

Epoch 3052/5000

35/35 [==============================] - 0s 709us/step - loss: 0.1100

Epoch 3053/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1095

Epoch 3054/5000

35/35 [==============================] - 0s 524us/step - loss: 0.1094

Epoch 3055/5000

35/35 [==============================] - 0s 523us/step - loss: 0.1096

Epoch 3056/5000

35/35 [==============================] - 0s 830us/step - loss: 0.1095

Epoch 3057/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1096

Epoch 3058/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1096

Epoch 3059/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1096

Epoch 3060/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1098

Epoch 3061/5000

35/35 [==============================] - 0s 676us/step - loss: 0.1097

Epoch 3062/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1098

Epoch 3063/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1106

Epoch 3064/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1102

Epoch 3065/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1098

Epoch 3066/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1097

Epoch 3067/5000

35/35 [==============================] - 0s 519us/step - loss: 0.1097

Epoch 3068/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1095

Epoch 3069/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1094

Epoch 3070/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1091

Epoch 3071/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1089

Epoch 3072/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1093

Epoch 3073/5000

35/35 [==============================] - 0s 524us/step - loss: 0.1095

Epoch 3074/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1096

Epoch 3075/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1094

Epoch 3076/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1091

Epoch 3077/5000

35/35 [==============================] - 0s 680us/step - loss: 0.1092

Epoch 3078/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1095

Epoch 3079/5000

35/35 [==============================] - 0s 793us/step - loss: 0.1097

Epoch 3080/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1098

Epoch 3081/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1099

Epoch 3082/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1101

Epoch 3083/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1107

Epoch 3084/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1109

Epoch 3085/5000

35/35 [==============================] - 0s 524us/step - loss: 0.1111

Epoch 3086/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1108

Epoch 3087/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1104

Epoch 3088/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1100

Epoch 3089/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1095

Epoch 3090/5000

35/35 [==============================] - 0s 505us/step - loss: 0.1092

Epoch 3091/5000

35/35 [==============================] - 0s 647us/step - loss: 0.1096

Epoch 3092/5000

35/35 [==============================] - 0s 658us/step - loss: 0.1096

Epoch 3093/5000

35/35 [==============================] - 0s 661us/step - loss: 0.1101

Epoch 3094/5000

35/35 [==============================] - 0s 751us/step - loss: 0.1106

Epoch 3095/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1115

Epoch 3096/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1115

Epoch 3097/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1114

Epoch 3098/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1116

Epoch 3099/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1110

Epoch 3100/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1110

Epoch 3101/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1108

Epoch 3102/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1107

Epoch 3103/5000

35/35 [==============================] - 0s 510us/step - loss: 0.1103

Epoch 3104/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1102

Epoch 3105/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1101

Epoch 3106/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1097

Epoch 3107/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1094

Epoch 3108/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1096

Epoch 3109/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1102

Epoch 3110/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1109

Epoch 3111/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1119

Epoch 3112/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1124

Epoch 3113/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1118

Epoch 3114/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1104

Epoch 3115/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1091

Epoch 3116/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1087

Epoch 3117/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1090

Epoch 3118/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1096

Epoch 3119/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1104

Epoch 3120/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1108

Epoch 3121/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1111

Epoch 3122/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1110

Epoch 3123/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1110

Epoch 3124/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1107

Epoch 3125/5000

35/35 [==============================] - 0s 685us/step - loss: 0.1103

Epoch 3126/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1100

Epoch 3127/5000

35/35 [==============================] - 0s 533us/step - loss: 0.1096

Epoch 3128/5000

35/35 [==============================] - 0s 505us/step - loss: 0.1093

Epoch 3129/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1090

Epoch 3130/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1087

Epoch 3131/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1089

Epoch 3132/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1095

Epoch 3133/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1096

Epoch 3134/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1099

Epoch 3135/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1092

Epoch 3136/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1092

Epoch 3137/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1086

Epoch 3138/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1086

Epoch 3139/5000

35/35 [==============================] - 0s 733us/step - loss: 0.1087

Epoch 3140/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1088

Epoch 3141/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1094

Epoch 3142/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1100

Epoch 3143/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1106

Epoch 3144/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1105

Epoch 3145/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1102

Epoch 3146/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1097

Epoch 3147/5000

35/35 [==============================] - 0s 804us/step - loss: 0.1097

Epoch 3148/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1096

Epoch 3149/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1096

Epoch 3150/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1099

Epoch 3151/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1101

Epoch 3152/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1102

Epoch 3153/5000

35/35 [==============================] - 0s 642us/step - loss: 0.1105

Epoch 3154/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1106

Epoch 3155/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1109

Epoch 3156/5000

35/35 [==============================] - 0s 508us/step - loss: 0.1109

Epoch 3157/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1100

Epoch 3158/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1095

Epoch 3159/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1093

Epoch 3160/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1095

Epoch 3161/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1099

Epoch 3162/5000

35/35 [==============================] - 0s 672us/step - loss: 0.1101

Epoch 3163/5000

35/35 [==============================] - 0s 685us/step - loss: 0.1100

Epoch 3164/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1095

Epoch 3165/5000

35/35 [==============================] - 0s 739us/step - loss: 0.1088

Epoch 3166/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1085

Epoch 3167/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1087

Epoch 3168/5000

35/35 [==============================] - 0s 696us/step - loss: 0.1093

Epoch 3169/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1095

Epoch 3170/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1095

Epoch 3171/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1094

Epoch 3172/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1094

Epoch 3173/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1092

Epoch 3174/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1090

Epoch 3175/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1087

Epoch 3176/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1088

Epoch 3177/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1087

Epoch 3178/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1091

Epoch 3179/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1092

Epoch 3180/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1092

Epoch 3181/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1093

Epoch 3182/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1097

Epoch 3183/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1101

Epoch 3184/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1107

Epoch 3185/5000

35/35 [==============================] - 0s 644us/step - loss: 0.1115

Epoch 3186/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1112

Epoch 3187/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1107

Epoch 3188/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1110

Epoch 3189/5000

35/35 [==============================] - 0s 687us/step - loss: 0.1109

Epoch 3190/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1109

Epoch 3191/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1109

Epoch 3192/5000

35/35 [==============================] - 0s 688us/step - loss: 0.1110

Epoch 3193/5000

35/35 [==============================] - 0s 668us/step - loss: 0.1106

Epoch 3194/5000

35/35 [==============================] - 0s 695us/step - loss: 0.1103

Epoch 3195/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1097

Epoch 3196/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1094

Epoch 3197/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1090

Epoch 3198/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1083

Epoch 3199/5000

35/35 [==============================] - 0s 532us/step - loss: 0.1082

Epoch 3200/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1089

Epoch 3201/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1093

Epoch 3202/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1100

Epoch 3203/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1114

Epoch 3204/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1138

Epoch 3205/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1160

Epoch 3206/5000

35/35 [==============================] - 0s 696us/step - loss: 0.1171

Epoch 3207/5000

35/35 [==============================] - 0s 683us/step - loss: 0.1172

Epoch 3208/5000

35/35 [==============================] - 0s 745us/step - loss: 0.1162

Epoch 3209/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1148

Epoch 3210/5000

35/35 [==============================] - 0s 698us/step - loss: 0.1135

Epoch 3211/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1123

Epoch 3212/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1118

Epoch 3213/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1115

Epoch 3214/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1107

Epoch 3215/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1108

Epoch 3216/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1111

Epoch 3217/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1112

Epoch 3218/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1115

Epoch 3219/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1114

Epoch 3220/5000

35/35 [==============================] - 0s 646us/step - loss: 0.1114

Epoch 3221/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1115

Epoch 3222/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1120

Epoch 3223/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1135

Epoch 3224/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1144

Epoch 3225/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1157

Epoch 3226/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1169

Epoch 3227/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1168

Epoch 3228/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1163

Epoch 3229/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1155

Epoch 3230/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1148

Epoch 3231/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1142

Epoch 3232/5000

35/35 [==============================] - 0s 756us/step - loss: 0.1136

Epoch 3233/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1126

Epoch 3234/5000

35/35 [==============================] - 0s 623us/step - loss: 0.1116

Epoch 3235/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1110

Epoch 3236/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1111

Epoch 3237/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1108

Epoch 3238/5000

35/35 [==============================] - 0s 670us/step - loss: 0.1108

Epoch 3239/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1107

Epoch 3240/5000

35/35 [==============================] - 0s 686us/step - loss: 0.1111

Epoch 3241/5000

35/35 [==============================] - 0s 647us/step - loss: 0.1112

Epoch 3242/5000

35/35 [==============================] - 0s 720us/step - loss: 0.1122

Epoch 3243/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1138

Epoch 3244/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1154

Epoch 3245/5000

35/35 [==============================] - 0s 514us/step - loss: 0.1166

Epoch 3246/5000

35/35 [==============================] - 0s 809us/step - loss: 0.1177

Epoch 3247/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1167

Epoch 3248/5000

35/35 [==============================] - 0s 740us/step - loss: 0.1152

Epoch 3249/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1139

Epoch 3250/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1132

Epoch 3251/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1115

Epoch 3252/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1104

Epoch 3253/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1093

Epoch 3254/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1086

Epoch 3255/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1086

Epoch 3256/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1088

Epoch 3257/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1086

Epoch 3258/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1085

Epoch 3259/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1084

Epoch 3260/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1083

Epoch 3261/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1084

Epoch 3262/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1097

Epoch 3263/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1112

Epoch 3264/5000

35/35 [==============================] - 0s 522us/step - loss: 0.1121

Epoch 3265/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1124

Epoch 3266/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1120

Epoch 3267/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1118

Epoch 3268/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1113

Epoch 3269/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1115

Epoch 3270/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1111

Epoch 3271/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1107

Epoch 3272/5000

35/35 [==============================] - 0s 649us/step - loss: 0.1104

Epoch 3273/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1104

Epoch 3274/5000

35/35 [==============================] - 0s 503us/step - loss: 0.1105

Epoch 3275/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1106

Epoch 3276/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1106

Epoch 3277/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1100

Epoch 3278/5000

35/35 [==============================] - 0s 693us/step - loss: 0.1096

Epoch 3279/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1097

Epoch 3280/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1093

Epoch 3281/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1088

Epoch 3282/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1084

Epoch 3283/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1086

Epoch 3284/5000

35/35 [==============================] - 0s 522us/step - loss: 0.1083

Epoch 3285/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1085

Epoch 3286/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1087

Epoch 3287/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1087

Epoch 3288/5000

35/35 [==============================] - 0s 803us/step - loss: 0.1085

Epoch 3289/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1083

Epoch 3290/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1088

Epoch 3291/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1089

Epoch 3292/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1089

Epoch 3293/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1087

Epoch 3294/5000

35/35 [==============================] - 0s 721us/step - loss: 0.1083

Epoch 3295/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1080

Epoch 3296/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1078

Epoch 3297/5000

35/35 [==============================] - 0s 667us/step - loss: 0.1078

Epoch 3298/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1079

Epoch 3299/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1077

Epoch 3300/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1081

Epoch 3301/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1082

Epoch 3302/5000

35/35 [==============================] - 0s 538us/step - loss: 0.1082

Epoch 3303/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1082

Epoch 3304/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1084

Epoch 3305/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1081

Epoch 3306/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1080

Epoch 3307/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1080

Epoch 3308/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1079

Epoch 3309/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1079

Epoch 3310/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1078

Epoch 3311/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1083

Epoch 3312/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1091

Epoch 3313/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1091

Epoch 3314/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1090

Epoch 3315/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1088

Epoch 3316/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1087

Epoch 3317/5000

35/35 [==============================] - 0s 658us/step - loss: 0.1086

Epoch 3318/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1085

Epoch 3319/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1091

Epoch 3320/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1101

Epoch 3321/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1106

Epoch 3322/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1104

Epoch 3323/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1104

Epoch 3324/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1104

Epoch 3325/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1106

Epoch 3326/5000

35/35 [==============================] - 0s 736us/step - loss: 0.1110

Epoch 3327/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1105

Epoch 3328/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1099

Epoch 3329/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1093

Epoch 3330/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1088

Epoch 3331/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1083

Epoch 3332/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1078

Epoch 3333/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1074

Epoch 3334/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1075

Epoch 3335/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1078

Epoch 3336/5000

35/35 [==============================] - 0s 709us/step - loss: 0.1079

Epoch 3337/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1078

Epoch 3338/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1076

Epoch 3339/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1075

Epoch 3340/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1072

Epoch 3341/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1074

Epoch 3342/5000

35/35 [==============================] - 0s 503us/step - loss: 0.1078

Epoch 3343/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1083

Epoch 3344/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1091

Epoch 3345/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1093

Epoch 3346/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1094

Epoch 3347/5000

35/35 [==============================] - 0s 508us/step - loss: 0.1096

Epoch 3348/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1100

Epoch 3349/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1092

Epoch 3350/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1088

Epoch 3351/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1085

Epoch 3352/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1085

Epoch 3353/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1090

Epoch 3354/5000

35/35 [==============================] - 0s 780us/step - loss: 0.1092

Epoch 3355/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1094

Epoch 3356/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1092

Epoch 3357/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1089

Epoch 3358/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1087

Epoch 3359/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1086

Epoch 3360/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1086

Epoch 3361/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1087

Epoch 3362/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1089

Epoch 3363/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1089

Epoch 3364/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1089

Epoch 3365/5000

35/35 [==============================] - 0s 715us/step - loss: 0.1088

Epoch 3366/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1086

Epoch 3367/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1084

Epoch 3368/5000

35/35 [==============================] - 0s 649us/step - loss: 0.1084

Epoch 3369/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1080

Epoch 3370/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1080

Epoch 3371/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1084

Epoch 3372/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1095

Epoch 3373/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1106

Epoch 3374/5000

35/35 [==============================] - 0s 737us/step - loss: 0.1111

Epoch 3375/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1110

Epoch 3376/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1108

Epoch 3377/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1103

Epoch 3378/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1099

Epoch 3379/5000

35/35 [==============================] - 0s 732us/step - loss: 0.1101

Epoch 3380/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1100

Epoch 3381/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1100

Epoch 3382/5000

35/35 [==============================] - 0s 677us/step - loss: 0.1101

Epoch 3383/5000

35/35 [==============================] - 0s 659us/step - loss: 0.1103

Epoch 3384/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1103

Epoch 3385/5000

35/35 [==============================] - 0s 692us/step - loss: 0.1099

Epoch 3386/5000

35/35 [==============================] - 0s 698us/step - loss: 0.1091

Epoch 3387/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1087

Epoch 3388/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1080

Epoch 3389/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1083

Epoch 3390/5000

35/35 [==============================] - 0s 778us/step - loss: 0.1077

Epoch 3391/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1078

Epoch 3392/5000

35/35 [==============================] - 0s 655us/step - loss: 0.1080

Epoch 3393/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1082

Epoch 3394/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1081

Epoch 3395/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1081

Epoch 3396/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1080

Epoch 3397/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1080

Epoch 3398/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1077

Epoch 3399/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1078

Epoch 3400/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1082

Epoch 3401/5000

35/35 [==============================] - 0s 657us/step - loss: 0.1082

Epoch 3402/5000

35/35 [==============================] - 0s 632us/step - loss: 0.1080

Epoch 3403/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1078

Epoch 3404/5000

35/35 [==============================] - 0s 677us/step - loss: 0.1076

Epoch 3405/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1078

Epoch 3406/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1082

Epoch 3407/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1079

Epoch 3408/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1078

Epoch 3409/5000

35/35 [==============================] - 0s 725us/step - loss: 0.1075

Epoch 3410/5000

35/35 [==============================] - 0s 667us/step - loss: 0.1074

Epoch 3411/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1072

Epoch 3412/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1074

Epoch 3413/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1073

Epoch 3414/5000

35/35 [==============================] - 0s 667us/step - loss: 0.1074

Epoch 3415/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1073

Epoch 3416/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1068

Epoch 3417/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1069

Epoch 3418/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1073

Epoch 3419/5000

35/35 [==============================] - 0s 774us/step - loss: 0.1072

Epoch 3420/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1071

Epoch 3421/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1074

Epoch 3422/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1075

Epoch 3423/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1080

Epoch 3424/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1080

Epoch 3425/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1079

Epoch 3426/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1076

Epoch 3427/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1073

Epoch 3428/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1072

Epoch 3429/5000

35/35 [==============================] - 0s 782us/step - loss: 0.1071

Epoch 3430/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1069

Epoch 3431/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1068

Epoch 3432/5000

35/35 [==============================] - 0s 658us/step - loss: 0.1068

Epoch 3433/5000

35/35 [==============================] - 0s 716us/step - loss: 0.1068

Epoch 3434/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1073

Epoch 3435/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1079

Epoch 3436/5000

35/35 [==============================] - 0s 684us/step - loss: 0.1086

Epoch 3437/5000

35/35 [==============================] - 0s 756us/step - loss: 0.1093

Epoch 3438/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1097

Epoch 3439/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1097

Epoch 3440/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1092

Epoch 3441/5000

35/35 [==============================] - 0s 699us/step - loss: 0.1084

Epoch 3442/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1083

Epoch 3443/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1075

Epoch 3444/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1078

Epoch 3445/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1070

Epoch 3446/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1065

Epoch 3447/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1069

Epoch 3448/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1072

Epoch 3449/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1076

Epoch 3450/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1078

Epoch 3451/5000

35/35 [==============================] - 0s 517us/step - loss: 0.1079

Epoch 3452/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1078

Epoch 3453/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1075

Epoch 3454/5000

35/35 [==============================] - 0s 660us/step - loss: 0.1071

Epoch 3455/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1072

Epoch 3456/5000

35/35 [==============================] - 0s 524us/step - loss: 0.1070

Epoch 3457/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1070

Epoch 3458/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1073

Epoch 3459/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1073

Epoch 3460/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1074

Epoch 3461/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1077

Epoch 3462/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1083

Epoch 3463/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1085

Epoch 3464/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1088

Epoch 3465/5000

35/35 [==============================] - 0s 715us/step - loss: 0.1089

Epoch 3466/5000

35/35 [==============================] - 0s 688us/step - loss: 0.1091

Epoch 3467/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1096

Epoch 3468/5000

35/35 [==============================] - 0s 632us/step - loss: 0.1104

Epoch 3469/5000

35/35 [==============================] - 0s 722us/step - loss: 0.1108

Epoch 3470/5000

35/35 [==============================] - 0s 655us/step - loss: 0.1109

Epoch 3471/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1108

Epoch 3472/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1104

Epoch 3473/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1098

Epoch 3474/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1092

Epoch 3475/5000

35/35 [==============================] - 0s 840us/step - loss: 0.1089

Epoch 3476/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1088

Epoch 3477/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1086

Epoch 3478/5000

35/35 [==============================] - 0s 529us/step - loss: 0.1085

Epoch 3479/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1080

Epoch 3480/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1076

Epoch 3481/5000

35/35 [==============================] - 0s 644us/step - loss: 0.1073

Epoch 3482/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1071

Epoch 3483/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1072

Epoch 3484/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1076

Epoch 3485/5000

35/35 [==============================] - 0s 506us/step - loss: 0.1075

Epoch 3486/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1079

Epoch 3487/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1088

Epoch 3488/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1099

Epoch 3489/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1098

Epoch 3490/5000

35/35 [==============================] - 0s 724us/step - loss: 0.1088

Epoch 3491/5000

35/35 [==============================] - 0s 643us/step - loss: 0.1077

Epoch 3492/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1071

Epoch 3493/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1074

Epoch 3494/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1077

Epoch 3495/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1077

Epoch 3496/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1078

Epoch 3497/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1075

Epoch 3498/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1073

Epoch 3499/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1070

Epoch 3500/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1068

Epoch 3501/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1066

Epoch 3502/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1064

Epoch 3503/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1064

Epoch 3504/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1065

Epoch 3505/5000

35/35 [==============================] - 0s 1ms/step - loss: 0.1066

Epoch 3506/5000

35/35 [==============================] - 0s 776us/step - loss: 0.1068

Epoch 3507/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1068

Epoch 3508/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1074

Epoch 3509/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1076

Epoch 3510/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1079

Epoch 3511/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1084

Epoch 3512/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1082

Epoch 3513/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1080

Epoch 3514/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1079

Epoch 3515/5000

35/35 [==============================] - 0s 623us/step - loss: 0.1078

Epoch 3516/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1077

Epoch 3517/5000

35/35 [==============================] - 0s 632us/step - loss: 0.1083

Epoch 3518/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1075

Epoch 3519/5000

35/35 [==============================] - 0s 725us/step - loss: 0.1076

Epoch 3520/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1077

Epoch 3521/5000

35/35 [==============================] - 0s 845us/step - loss: 0.1075

Epoch 3522/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1073

Epoch 3523/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1071

Epoch 3524/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1068

Epoch 3525/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1067

Epoch 3526/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1066

Epoch 3527/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1067

Epoch 3528/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1070

Epoch 3529/5000

35/35 [==============================] - 0s 538us/step - loss: 0.1072

Epoch 3530/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1081

Epoch 3531/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1086

Epoch 3532/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1088

Epoch 3533/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1089

Epoch 3534/5000

35/35 [==============================] - 0s 672us/step - loss: 0.1088

Epoch 3535/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1084

Epoch 3536/5000

35/35 [==============================] - 0s 657us/step - loss: 0.1085

Epoch 3537/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1085

Epoch 3538/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1084

Epoch 3539/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1086

Epoch 3540/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1090

Epoch 3541/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1088

Epoch 3542/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1096

Epoch 3543/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1105

Epoch 3544/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1118

Epoch 3545/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1128

Epoch 3546/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1126

Epoch 3547/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1112

Epoch 3548/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1099

Epoch 3549/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1092

Epoch 3550/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1090

Epoch 3551/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1090

Epoch 3552/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1090

Epoch 3553/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1090

Epoch 3554/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1085

Epoch 3555/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1078

Epoch 3556/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1072

Epoch 3557/5000

35/35 [==============================] - 0s 747us/step - loss: 0.1070

Epoch 3558/5000

35/35 [==============================] - 0s 845us/step - loss: 0.1066

Epoch 3559/5000

35/35 [==============================] - 0s 710us/step - loss: 0.1068

Epoch 3560/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1067

Epoch 3561/5000

35/35 [==============================] - 0s 646us/step - loss: 0.1066

Epoch 3562/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1066

Epoch 3563/5000

35/35 [==============================] - 0s 656us/step - loss: 0.1066

Epoch 3564/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1070

Epoch 3565/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1072

Epoch 3566/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1068

Epoch 3567/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1066

Epoch 3568/5000

35/35 [==============================] - 0s 658us/step - loss: 0.1066

Epoch 3569/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1068

Epoch 3570/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1071

Epoch 3571/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1072

Epoch 3572/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1070

Epoch 3573/5000

35/35 [==============================] - 0s 666us/step - loss: 0.1070

Epoch 3574/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1067

Epoch 3575/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1069

Epoch 3576/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1071

Epoch 3577/5000

35/35 [==============================] - 0s 683us/step - loss: 0.1069

Epoch 3578/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1065

Epoch 3579/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1062

Epoch 3580/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1064

Epoch 3581/5000

35/35 [==============================] - 0s 688us/step - loss: 0.1064

Epoch 3582/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1063

Epoch 3583/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1063

Epoch 3584/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1066

Epoch 3585/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1064

Epoch 3586/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1065

Epoch 3587/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1064

Epoch 3588/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1069

Epoch 3589/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1071

Epoch 3590/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1067

Epoch 3591/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1067

Epoch 3592/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1069

Epoch 3593/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1069

Epoch 3594/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1082

Epoch 3595/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1107

Epoch 3596/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1111

Epoch 3597/5000

35/35 [==============================] - 0s 714us/step - loss: 0.1107

Epoch 3598/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1104

Epoch 3599/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1097

Epoch 3600/5000

35/35 [==============================] - 0s 741us/step - loss: 0.1098

Epoch 3601/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1097

Epoch 3602/5000

35/35 [==============================] - 0s 796us/step - loss: 0.1091

Epoch 3603/5000

35/35 [==============================] - 0s 658us/step - loss: 0.1081

Epoch 3604/5000

35/35 [==============================] - 0s 770us/step - loss: 0.1072

Epoch 3605/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1064

Epoch 3606/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1059

Epoch 3607/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1065

Epoch 3608/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1059

Epoch 3609/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1058

Epoch 3610/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1060

Epoch 3611/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1063

Epoch 3612/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1071

Epoch 3613/5000

35/35 [==============================] - 0s 757us/step - loss: 0.1076

Epoch 3614/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1083

Epoch 3615/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1082

Epoch 3616/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1081

Epoch 3617/5000

35/35 [==============================] - 0s 708us/step - loss: 0.1078

Epoch 3618/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1078

Epoch 3619/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1076

Epoch 3620/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1069

Epoch 3621/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1067

Epoch 3622/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1069

Epoch 3623/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1070

Epoch 3624/5000

35/35 [==============================] - 0s 646us/step - loss: 0.1085

Epoch 3625/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1093

Epoch 3626/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1094

Epoch 3627/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1092

Epoch 3628/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1086

Epoch 3629/5000

35/35 [==============================] - 0s 665us/step - loss: 0.1082

Epoch 3630/5000

35/35 [==============================] - 0s 713us/step - loss: 0.1077

Epoch 3631/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1073

Epoch 3632/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1076

Epoch 3633/5000

35/35 [==============================] - 0s 676us/step - loss: 0.1080

Epoch 3634/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1078

Epoch 3635/5000

35/35 [==============================] - 0s 825us/step - loss: 0.1075

Epoch 3636/5000

35/35 [==============================] - 0s 622us/step - loss: 0.1074

Epoch 3637/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1069

Epoch 3638/5000

35/35 [==============================] - 0s 519us/step - loss: 0.1061

Epoch 3639/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1061

Epoch 3640/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1059

Epoch 3641/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1060

Epoch 3642/5000

35/35 [==============================] - 0s 620us/step - loss: 0.1056

Epoch 3643/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1054

Epoch 3644/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1060

Epoch 3645/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1068

Epoch 3646/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1069

Epoch 3647/5000

35/35 [==============================] - 0s 790us/step - loss: 0.1072

Epoch 3648/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1070

Epoch 3649/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1068

Epoch 3650/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1064

Epoch 3651/5000

35/35 [==============================] - 0s 505us/step - loss: 0.1067

Epoch 3652/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1057

Epoch 3653/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1061

Epoch 3654/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1063

Epoch 3655/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1061

Epoch 3656/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1072

Epoch 3657/5000

35/35 [==============================] - 0s 665us/step - loss: 0.1078

Epoch 3658/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1083

Epoch 3659/5000

35/35 [==============================] - 0s 677us/step - loss: 0.1088

Epoch 3660/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1091

Epoch 3661/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1093

Epoch 3662/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1092

Epoch 3663/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1088

Epoch 3664/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1083

Epoch 3665/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1078

Epoch 3666/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1075

Epoch 3667/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1066

Epoch 3668/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1062

Epoch 3669/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1061

Epoch 3670/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1063

Epoch 3671/5000

35/35 [==============================] - 0s 673us/step - loss: 0.1073

Epoch 3672/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1086

Epoch 3673/5000

35/35 [==============================] - 0s 695us/step - loss: 0.1096

Epoch 3674/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1088

Epoch 3675/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1082

Epoch 3676/5000

35/35 [==============================] - 0s 691us/step - loss: 0.1074

Epoch 3677/5000

35/35 [==============================] - 0s 623us/step - loss: 0.1074

Epoch 3678/5000

35/35 [==============================] - 0s 689us/step - loss: 0.1079

Epoch 3679/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1075

Epoch 3680/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1073

Epoch 3681/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1070

Epoch 3682/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1068

Epoch 3683/5000

35/35 [==============================] - 0s 532us/step - loss: 0.1065

Epoch 3684/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1062

Epoch 3685/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1059

Epoch 3686/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1062

Epoch 3687/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1063

Epoch 3688/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1062

Epoch 3689/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1066

Epoch 3690/5000

35/35 [==============================] - 0s 695us/step - loss: 0.1069

Epoch 3691/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1070

Epoch 3692/5000

35/35 [==============================] - 0s 676us/step - loss: 0.1080

Epoch 3693/5000

35/35 [==============================] - 0s 757us/step - loss: 0.1089

Epoch 3694/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1095

Epoch 3695/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1092

Epoch 3696/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1085

Epoch 3697/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1079

Epoch 3698/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1076

Epoch 3699/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1076

Epoch 3700/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1073

Epoch 3701/5000

35/35 [==============================] - 0s 532us/step - loss: 0.1072

Epoch 3702/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1076

Epoch 3703/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1078

Epoch 3704/5000

35/35 [==============================] - 0s 667us/step - loss: 0.1074

Epoch 3705/5000

35/35 [==============================] - 0s 720us/step - loss: 0.1070

Epoch 3706/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1067

Epoch 3707/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1064

Epoch 3708/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1069

Epoch 3709/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1069

Epoch 3710/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1068

Epoch 3711/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1067

Epoch 3712/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1064

Epoch 3713/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1064

Epoch 3714/5000

35/35 [==============================] - 0s 513us/step - loss: 0.1068

Epoch 3715/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1070

Epoch 3716/5000

35/35 [==============================] - 0s 507us/step - loss: 0.1071

Epoch 3717/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1067

Epoch 3718/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1066

Epoch 3719/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1070

Epoch 3720/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1069

Epoch 3721/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1060

Epoch 3722/5000

35/35 [==============================] - 0s 698us/step - loss: 0.1052

Epoch 3723/5000

35/35 [==============================] - 0s 708us/step - loss: 0.1054

Epoch 3724/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1068

Epoch 3725/5000

35/35 [==============================] - 0s 515us/step - loss: 0.1070

Epoch 3726/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1070

Epoch 3727/5000

35/35 [==============================] - 0s 661us/step - loss: 0.1071

Epoch 3728/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1072

Epoch 3729/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1071

Epoch 3730/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1071

Epoch 3731/5000

35/35 [==============================] - 0s 656us/step - loss: 0.1070

Epoch 3732/5000

35/35 [==============================] - 0s 730us/step - loss: 0.1068

Epoch 3733/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1067

Epoch 3734/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1063

Epoch 3735/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1059

Epoch 3736/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1057

Epoch 3737/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1056

Epoch 3738/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1054

Epoch 3739/5000

35/35 [==============================] - 0s 649us/step - loss: 0.1053

Epoch 3740/5000

35/35 [==============================] - 0s 762us/step - loss: 0.1053

Epoch 3741/5000

35/35 [==============================] - 0s 735us/step - loss: 0.1054

Epoch 3742/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1055

Epoch 3743/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1056

Epoch 3744/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1057

Epoch 3745/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1055

Epoch 3746/5000

35/35 [==============================] - 0s 632us/step - loss: 0.1054

Epoch 3747/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1054

Epoch 3748/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1057

Epoch 3749/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1061

Epoch 3750/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1063

Epoch 3751/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1065

Epoch 3752/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1062

Epoch 3753/5000

35/35 [==============================] - 0s 731us/step - loss: 0.1057

Epoch 3754/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1056

Epoch 3755/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1057

Epoch 3756/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1059

Epoch 3757/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1062

Epoch 3758/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1065

Epoch 3759/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1070

Epoch 3760/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1065

Epoch 3761/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1056

Epoch 3762/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1055

Epoch 3763/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1052

Epoch 3764/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1053

Epoch 3765/5000

35/35 [==============================] - 0s 523us/step - loss: 0.1055

Epoch 3766/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1056

Epoch 3767/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1053

Epoch 3768/5000

35/35 [==============================] - 0s 524us/step - loss: 0.1052

Epoch 3769/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1055

Epoch 3770/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1066

Epoch 3771/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1075

Epoch 3772/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1080

Epoch 3773/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1085

Epoch 3774/5000

35/35 [==============================] - 0s 629us/step - loss: 0.1085

Epoch 3775/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1084

Epoch 3776/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1082

Epoch 3777/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1080

Epoch 3778/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1075

Epoch 3779/5000

35/35 [==============================] - 0s 679us/step - loss: 0.1068

Epoch 3780/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1065

Epoch 3781/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1066

Epoch 3782/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1065

Epoch 3783/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1067

Epoch 3784/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1071

Epoch 3785/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1078

Epoch 3786/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1080

Epoch 3787/5000

35/35 [==============================] - 0s 852us/step - loss: 0.1080

Epoch 3788/5000

35/35 [==============================] - 0s 722us/step - loss: 0.1081

Epoch 3789/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1076

Epoch 3790/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1064

Epoch 3791/5000

35/35 [==============================] - 0s 482us/step - loss: 0.1064

Epoch 3792/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1060

Epoch 3793/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1057

Epoch 3794/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1056

Epoch 3795/5000

35/35 [==============================] - 0s 702us/step - loss: 0.1059

Epoch 3796/5000

35/35 [==============================] - 0s 897us/step - loss: 0.1058

Epoch 3797/5000

35/35 [==============================] - 0s 723us/step - loss: 0.1058

Epoch 3798/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1057

Epoch 3799/5000

35/35 [==============================] - 0s 763us/step - loss: 0.1059

Epoch 3800/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1060

Epoch 3801/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1061

Epoch 3802/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1055

Epoch 3803/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1050

Epoch 3804/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1049

Epoch 3805/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1050

Epoch 3806/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1047

Epoch 3807/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1047

Epoch 3808/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1050

Epoch 3809/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1050

Epoch 3810/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1049

Epoch 3811/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1046

Epoch 3812/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1048

Epoch 3813/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1055

Epoch 3814/5000

35/35 [==============================] - 0s 529us/step - loss: 0.1054

Epoch 3815/5000

35/35 [==============================] - 0s 666us/step - loss: 0.1057

Epoch 3816/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1062

Epoch 3817/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1065

Epoch 3818/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1065

Epoch 3819/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1065

Epoch 3820/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1062

Epoch 3821/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1062

Epoch 3822/5000

35/35 [==============================] - 0s 716us/step - loss: 0.1062

Epoch 3823/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1065

Epoch 3824/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1071

Epoch 3825/5000

35/35 [==============================] - 0s 496us/step - loss: 0.1079

Epoch 3826/5000

35/35 [==============================] - 0s 506us/step - loss: 0.1089

Epoch 3827/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1100

Epoch 3828/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1101

Epoch 3829/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1098

Epoch 3830/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1094

Epoch 3831/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1090

Epoch 3832/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1085

Epoch 3833/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1072

Epoch 3834/5000

35/35 [==============================] - 0s 810us/step - loss: 0.1066

Epoch 3835/5000

35/35 [==============================] - 0s 546us/step - loss: 0.1067

Epoch 3836/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1074

Epoch 3837/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1077

Epoch 3838/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1077

Epoch 3839/5000

35/35 [==============================] - 0s 687us/step - loss: 0.1075

Epoch 3840/5000

35/35 [==============================] - 0s 652us/step - loss: 0.1075

Epoch 3841/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1072

Epoch 3842/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1068

Epoch 3843/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1068

Epoch 3844/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1064

Epoch 3845/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1059

Epoch 3846/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1056

Epoch 3847/5000

35/35 [==============================] - 0s 830us/step - loss: 0.1058

Epoch 3848/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1057

Epoch 3849/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1062

Epoch 3850/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1066

Epoch 3851/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1069

Epoch 3852/5000

35/35 [==============================] - 0s 679us/step - loss: 0.1072

Epoch 3853/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1071

Epoch 3854/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1074

Epoch 3855/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1078

Epoch 3856/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1072

Epoch 3857/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1069

Epoch 3858/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1061

Epoch 3859/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1049

Epoch 3860/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1047

Epoch 3861/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1044

Epoch 3862/5000

35/35 [==============================] - 0s 538us/step - loss: 0.1038

Epoch 3863/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1043

Epoch 3864/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1048

Epoch 3865/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1063

Epoch 3866/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1080

Epoch 3867/5000

35/35 [==============================] - 0s 641us/step - loss: 0.1093

Epoch 3868/5000

35/35 [==============================] - 0s 695us/step - loss: 0.1109

Epoch 3869/5000

35/35 [==============================] - 0s 518us/step - loss: 0.1119

Epoch 3870/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1105

Epoch 3871/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1070

Epoch 3872/5000

35/35 [==============================] - 0s 702us/step - loss: 0.1061

Epoch 3873/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1056

Epoch 3874/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1054

Epoch 3875/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1054

Epoch 3876/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1050

Epoch 3877/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1054

Epoch 3878/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1054

Epoch 3879/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1054

Epoch 3880/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1051

Epoch 3881/5000

35/35 [==============================] - 0s 673us/step - loss: 0.1048

Epoch 3882/5000

35/35 [==============================] - 0s 711us/step - loss: 0.1042

Epoch 3883/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1037

Epoch 3884/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1034

Epoch 3885/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1033

Epoch 3886/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1034

Epoch 3887/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1041

Epoch 3888/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1038

Epoch 3889/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1044

Epoch 3890/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1053

Epoch 3891/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1062

Epoch 3892/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1064

Epoch 3893/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1064

Epoch 3894/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1062

Epoch 3895/5000

35/35 [==============================] - 0s 757us/step - loss: 0.1062

Epoch 3896/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1059

Epoch 3897/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1059

Epoch 3898/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1055

Epoch 3899/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1050

Epoch 3900/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1047

Epoch 3901/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1042

Epoch 3902/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1039

Epoch 3903/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1035

Epoch 3904/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1036

Epoch 3905/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1042

Epoch 3906/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1046

Epoch 3907/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1056

Epoch 3908/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1069

Epoch 3909/5000

35/35 [==============================] - 0s 684us/step - loss: 0.1078

Epoch 3910/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1089

Epoch 3911/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1089

Epoch 3912/5000

35/35 [==============================] - 0s 663us/step - loss: 0.1077

Epoch 3913/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1070

Epoch 3914/5000

35/35 [==============================] - 0s 532us/step - loss: 0.1062

Epoch 3915/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1056

Epoch 3916/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1051

Epoch 3917/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1048

Epoch 3918/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1047

Epoch 3919/5000

35/35 [==============================] - 0s 538us/step - loss: 0.1054

Epoch 3920/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1052

Epoch 3921/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1055

Epoch 3922/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1059

Epoch 3923/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1064

Epoch 3924/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1062

Epoch 3925/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1059

Epoch 3926/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1057

Epoch 3927/5000

35/35 [==============================] - 0s 692us/step - loss: 0.1052

Epoch 3928/5000

35/35 [==============================] - 0s 1ms/step - loss: 0.1040

Epoch 3929/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1040

Epoch 3930/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1039

Epoch 3931/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1034

Epoch 3932/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1035

Epoch 3933/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1038

Epoch 3934/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1041

Epoch 3935/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1059

Epoch 3936/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1054

Epoch 3937/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1055

Epoch 3938/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1054

Epoch 3939/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1053

Epoch 3940/5000

35/35 [==============================] - 0s 721us/step - loss: 0.1047

Epoch 3941/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1038

Epoch 3942/5000

35/35 [==============================] - 0s 858us/step - loss: 0.1033

Epoch 3943/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1036

Epoch 3944/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1037

Epoch 3945/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1038

Epoch 3946/5000

35/35 [==============================] - 0s 512us/step - loss: 0.1037

Epoch 3947/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1035

Epoch 3948/5000

35/35 [==============================] - 0s 522us/step - loss: 0.1034

Epoch 3949/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1035

Epoch 3950/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1035

Epoch 3951/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1039

Epoch 3952/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1042

Epoch 3953/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1046

Epoch 3954/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1047

Epoch 3955/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1047

Epoch 3956/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1051

Epoch 3957/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1045

Epoch 3958/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1034

Epoch 3959/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1045

Epoch 3960/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1064

Epoch 3961/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1078

Epoch 3962/5000

35/35 [==============================] - 0s 736us/step - loss: 0.1085

Epoch 3963/5000

35/35 [==============================] - 0s 680us/step - loss: 0.1088

Epoch 3964/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1087

Epoch 3965/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1087

Epoch 3966/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1084

Epoch 3967/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1090

Epoch 3968/5000

35/35 [==============================] - 0s 508us/step - loss: 0.1092

Epoch 3969/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1100

Epoch 3970/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1114

Epoch 3971/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1126

Epoch 3972/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1134

Epoch 3973/5000

35/35 [==============================] - 0s 768us/step - loss: 0.1140

Epoch 3974/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1151

Epoch 3975/5000

35/35 [==============================] - 0s 853us/step - loss: 0.1157

Epoch 3976/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1141

Epoch 3977/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1107

Epoch 3978/5000

35/35 [==============================] - 0s 617us/step - loss: 0.1082

Epoch 3979/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1066

Epoch 3980/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1054

Epoch 3981/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1048

Epoch 3982/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1050

Epoch 3983/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1053

Epoch 3984/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1063

Epoch 3985/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1062

Epoch 3986/5000

35/35 [==============================] - 0s 732us/step - loss: 0.1058

Epoch 3987/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1052

Epoch 3988/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1049

Epoch 3989/5000

35/35 [==============================] - 0s 904us/step - loss: 0.1045

Epoch 3990/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1038

Epoch 3991/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1036

Epoch 3992/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1037

Epoch 3993/5000

35/35 [==============================] - 0s 662us/step - loss: 0.1029

Epoch 3994/5000

35/35 [==============================] - 0s 912us/step - loss: 0.1028

Epoch 3995/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1023

Epoch 3996/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1025

Epoch 3997/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1026

Epoch 3998/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1027

Epoch 3999/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1028

Epoch 4000/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1030

Epoch 4001/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1032

Epoch 4002/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1032

Epoch 4003/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1032

Epoch 4004/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1033

Epoch 4005/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1029

Epoch 4006/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1029

Epoch 4007/5000

35/35 [==============================] - 0s 710us/step - loss: 0.1034

Epoch 4008/5000

35/35 [==============================] - 0s 745us/step - loss: 0.1032

Epoch 4009/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1032

Epoch 4010/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1035

Epoch 4011/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1044

Epoch 4012/5000

35/35 [==============================] - 0s 609us/step - loss: 0.1042

Epoch 4013/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1039

Epoch 4014/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1039

Epoch 4015/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1039

Epoch 4016/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1038

Epoch 4017/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1036

Epoch 4018/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1038

Epoch 4019/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1039

Epoch 4020/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1044

Epoch 4021/5000

35/35 [==============================] - 0s 749us/step - loss: 0.1043

Epoch 4022/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1042

Epoch 4023/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1041

Epoch 4024/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1045

Epoch 4025/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1040

Epoch 4026/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1039

Epoch 4027/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1042

Epoch 4028/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1043

Epoch 4029/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1047

Epoch 4030/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1051

Epoch 4031/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1051

Epoch 4032/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1050

Epoch 4033/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1048

Epoch 4034/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1043

Epoch 4035/5000

35/35 [==============================] - 0s 649us/step - loss: 0.1037

Epoch 4036/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1028

Epoch 4037/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1020

Epoch 4038/5000

35/35 [==============================] - 0s 710us/step - loss: 0.1013

Epoch 4039/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1027

Epoch 4040/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1034

Epoch 4041/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1047

Epoch 4042/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1052

Epoch 4043/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1054

Epoch 4044/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1056

Epoch 4045/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1054

Epoch 4046/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1053

Epoch 4047/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1051

Epoch 4048/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1056

Epoch 4049/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1051

Epoch 4050/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1046

Epoch 4051/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1042

Epoch 4052/5000

35/35 [==============================] - 0s 601us/step - loss: 0.1035

Epoch 4053/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1031

Epoch 4054/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1024

Epoch 4055/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1020

Epoch 4056/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1021

Epoch 4057/5000

35/35 [==============================] - 0s 670us/step - loss: 0.1023

Epoch 4058/5000

35/35 [==============================] - 0s 729us/step - loss: 0.1029

Epoch 4059/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1034

Epoch 4060/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1042

Epoch 4061/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1044

Epoch 4062/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1045

Epoch 4063/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1046

Epoch 4064/5000

35/35 [==============================] - 0s 668us/step - loss: 0.1053

Epoch 4065/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1045

Epoch 4066/5000

35/35 [==============================] - 0s 519us/step - loss: 0.1030

Epoch 4067/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1026

Epoch 4068/5000

35/35 [==============================] - 0s 872us/step - loss: 0.1019

Epoch 4069/5000

35/35 [==============================] - 0s 591us/step - loss: 0.1024

Epoch 4070/5000

35/35 [==============================] - 0s 553us/step - loss: 0.1021

Epoch 4071/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1025

Epoch 4072/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1023

Epoch 4073/5000

35/35 [==============================] - 0s 635us/step - loss: 0.1024

Epoch 4074/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1020

Epoch 4075/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1021

Epoch 4076/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1027

Epoch 4077/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1030

Epoch 4078/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1035

Epoch 4079/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1036

Epoch 4080/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1037

Epoch 4081/5000

35/35 [==============================] - 0s 603us/step - loss: 0.1042

Epoch 4082/5000

35/35 [==============================] - 0s 816us/step - loss: 0.1048

Epoch 4083/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1059

Epoch 4084/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1067

Epoch 4085/5000

35/35 [==============================] - 0s 742us/step - loss: 0.1079

Epoch 4086/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1095

Epoch 4087/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1098

Epoch 4088/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1098

Epoch 4089/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1100

Epoch 4090/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1099

Epoch 4091/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1085

Epoch 4092/5000

35/35 [==============================] - 0s 660us/step - loss: 0.1057

Epoch 4093/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1029

Epoch 4094/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1028

Epoch 4095/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1025

Epoch 4096/5000

35/35 [==============================] - 0s 674us/step - loss: 0.1028

Epoch 4097/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1030

Epoch 4098/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1033

Epoch 4099/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1033

Epoch 4100/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1030

Epoch 4101/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1029

Epoch 4102/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1028

Epoch 4103/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1031

Epoch 4104/5000

35/35 [==============================] - 0s 525us/step - loss: 0.1029

Epoch 4105/5000

35/35 [==============================] - 0s 502us/step - loss: 0.1026

Epoch 4106/5000

35/35 [==============================] - 0s 497us/step - loss: 0.1024

Epoch 4107/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1027

Epoch 4108/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1025

Epoch 4109/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1026

Epoch 4110/5000

35/35 [==============================] - 0s 691us/step - loss: 0.1026

Epoch 4111/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1029

Epoch 4112/5000

35/35 [==============================] - 0s 530us/step - loss: 0.1038

Epoch 4113/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1039

Epoch 4114/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1035

Epoch 4115/5000

35/35 [==============================] - 0s 708us/step - loss: 0.1028

Epoch 4116/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1025

Epoch 4117/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1029

Epoch 4118/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1031

Epoch 4119/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1039

Epoch 4120/5000

35/35 [==============================] - 0s 619us/step - loss: 0.1048

Epoch 4121/5000

35/35 [==============================] - 0s 615us/step - loss: 0.1054

Epoch 4122/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1064

Epoch 4123/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1070

Epoch 4124/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1067

Epoch 4125/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1059

Epoch 4126/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1049

Epoch 4127/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1042

Epoch 4128/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1039

Epoch 4129/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1037

Epoch 4130/5000

35/35 [==============================] - 0s 683us/step - loss: 0.1034

Epoch 4131/5000

35/35 [==============================] - 0s 685us/step - loss: 0.1032

Epoch 4132/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1028

Epoch 4133/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1026

Epoch 4134/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1027

Epoch 4135/5000

35/35 [==============================] - 0s 672us/step - loss: 0.1028

Epoch 4136/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1033

Epoch 4137/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1031

Epoch 4138/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1026

Epoch 4139/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1022

Epoch 4140/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1017

Epoch 4141/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1021

Epoch 4142/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1022

Epoch 4143/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1026

Epoch 4144/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1032

Epoch 4145/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1056

Epoch 4146/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1054

Epoch 4147/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1047

Epoch 4148/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1039

Epoch 4149/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1034

Epoch 4150/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1027

Epoch 4151/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1038

Epoch 4152/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1036

Epoch 4153/5000

35/35 [==============================] - 0s 719us/step - loss: 0.1036

Epoch 4154/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1035

Epoch 4155/5000

35/35 [==============================] - 0s 630us/step - loss: 0.1033

Epoch 4156/5000

35/35 [==============================] - 0s 654us/step - loss: 0.1031

Epoch 4157/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1029

Epoch 4158/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1028

Epoch 4159/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1026

Epoch 4160/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1029

Epoch 4161/5000

35/35 [==============================] - 0s 809us/step - loss: 0.1032

Epoch 4162/5000

35/35 [==============================] - 0s 815us/step - loss: 0.1038

Epoch 4163/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1043

Epoch 4164/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1040

Epoch 4165/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1033

Epoch 4166/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1024

Epoch 4167/5000

35/35 [==============================] - 0s 656us/step - loss: 0.1017

Epoch 4168/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1014

Epoch 4169/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1011

Epoch 4170/5000

35/35 [==============================] - 0s 689us/step - loss: 0.1013

Epoch 4171/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1028

Epoch 4172/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1049

Epoch 4173/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1051

Epoch 4174/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1047

Epoch 4175/5000

35/35 [==============================] - 0s 626us/step - loss: 0.1040

Epoch 4176/5000

35/35 [==============================] - 0s 596us/step - loss: 0.1033

Epoch 4177/5000

35/35 [==============================] - 0s 849us/step - loss: 0.1033

Epoch 4178/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1034

Epoch 4179/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1042

Epoch 4180/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1046

Epoch 4181/5000

35/35 [==============================] - 0s 662us/step - loss: 0.1058

Epoch 4182/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1062

Epoch 4183/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1053

Epoch 4184/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1046

Epoch 4185/5000

35/35 [==============================] - 0s 528us/step - loss: 0.1045

Epoch 4186/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1038

Epoch 4187/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1025

Epoch 4188/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1021

Epoch 4189/5000

35/35 [==============================] - 0s 653us/step - loss: 0.1018

Epoch 4190/5000

35/35 [==============================] - 0s 761us/step - loss: 0.1014

Epoch 4191/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1011

Epoch 4192/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1014

Epoch 4193/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1013

Epoch 4194/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1015

Epoch 4195/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1017

Epoch 4196/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1020

Epoch 4197/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1023

Epoch 4198/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1023

Epoch 4199/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1028

Epoch 4200/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1028

Epoch 4201/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1029

Epoch 4202/5000

35/35 [==============================] - 0s 614us/step - loss: 0.1031

Epoch 4203/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1037

Epoch 4204/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1042

Epoch 4205/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1047

Epoch 4206/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1051

Epoch 4207/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1051

Epoch 4208/5000

35/35 [==============================] - 0s 854us/step - loss: 0.1049

Epoch 4209/5000

35/35 [==============================] - 0s 662us/step - loss: 0.1047

Epoch 4210/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1045

Epoch 4211/5000

35/35 [==============================] - 0s 654us/step - loss: 0.1045

Epoch 4212/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1038

Epoch 4213/5000

35/35 [==============================] - 0s 697us/step - loss: 0.1031

Epoch 4214/5000

35/35 [==============================] - 0s 642us/step - loss: 0.1032

Epoch 4215/5000

35/35 [==============================] - 0s 734us/step - loss: 0.1025

Epoch 4216/5000

35/35 [==============================] - 0s 606us/step - loss: 0.1022

Epoch 4217/5000

35/35 [==============================] - 0s 644us/step - loss: 0.1018

Epoch 4218/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1017

Epoch 4219/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1015

Epoch 4220/5000

35/35 [==============================] - 0s 627us/step - loss: 0.1013

Epoch 4221/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1013

Epoch 4222/5000

35/35 [==============================] - 0s 686us/step - loss: 0.1005

Epoch 4223/5000

35/35 [==============================] - 0s 709us/step - loss: 0.1001

Epoch 4224/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1006

Epoch 4225/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1008

Epoch 4226/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1010

Epoch 4227/5000

35/35 [==============================] - 0s 559us/step - loss: 0.1011

Epoch 4228/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1012

Epoch 4229/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1013

Epoch 4230/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1016

Epoch 4231/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1017

Epoch 4232/5000

35/35 [==============================] - 0s 544us/step - loss: 0.1018

Epoch 4233/5000

35/35 [==============================] - 0s 540us/step - loss: 0.1018

Epoch 4234/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1018

Epoch 4235/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1019

Epoch 4236/5000

35/35 [==============================] - 0s 526us/step - loss: 0.1022

Epoch 4237/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1027

Epoch 4238/5000

35/35 [==============================] - 0s 628us/step - loss: 0.1030

Epoch 4239/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1027

Epoch 4240/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1023

Epoch 4241/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1020

Epoch 4242/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1017

Epoch 4243/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1015

Epoch 4244/5000

35/35 [==============================] - 0s 659us/step - loss: 0.1011

Epoch 4245/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1012

Epoch 4246/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1010

Epoch 4247/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1014

Epoch 4248/5000

35/35 [==============================] - 0s 637us/step - loss: 0.1010

Epoch 4249/5000

35/35 [==============================] - 0s 762us/step - loss: 0.1007

Epoch 4250/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1004

Epoch 4251/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1001

Epoch 4252/5000

35/35 [==============================] - 0s 790us/step - loss: 0.0999

Epoch 4253/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1003

Epoch 4254/5000

35/35 [==============================] - 0s 897us/step - loss: 0.1005

Epoch 4255/5000

35/35 [==============================] - 0s 590us/step - loss: 0.1006

Epoch 4256/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1009

Epoch 4257/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1013

Epoch 4258/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1012

Epoch 4259/5000

35/35 [==============================] - 0s 648us/step - loss: 0.1012

Epoch 4260/5000

35/35 [==============================] - 0s 543us/step - loss: 0.1016

Epoch 4261/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1020

Epoch 4262/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1026

Epoch 4263/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1021

Epoch 4264/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1013

Epoch 4265/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1007

Epoch 4266/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1003

Epoch 4267/5000

35/35 [==============================] - 0s 593us/step - loss: 0.0999

Epoch 4268/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1001

Epoch 4269/5000

35/35 [==============================] - 0s 644us/step - loss: 0.1001

Epoch 4270/5000

35/35 [==============================] - 0s 690us/step - loss: 0.1006

Epoch 4271/5000

35/35 [==============================] - 0s 607us/step - loss: 0.1004

Epoch 4272/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1005

Epoch 4273/5000

35/35 [==============================] - 0s 636us/step - loss: 0.1006

Epoch 4274/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1009

Epoch 4275/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1011

Epoch 4276/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1013

Epoch 4277/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1015

Epoch 4278/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1017

Epoch 4279/5000

35/35 [==============================] - 0s 581us/step - loss: 0.1022

Epoch 4280/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1027

Epoch 4281/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1014

Epoch 4282/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1002

Epoch 4283/5000

35/35 [==============================] - 0s 564us/step - loss: 0.0993

Epoch 4284/5000

35/35 [==============================] - 0s 551us/step - loss: 0.0993

Epoch 4285/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1015

Epoch 4286/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1007

Epoch 4287/5000

35/35 [==============================] - 0s 554us/step - loss: 0.1008

Epoch 4288/5000

35/35 [==============================] - 0s 574us/step - loss: 0.1009

Epoch 4289/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1008

Epoch 4290/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1005

Epoch 4291/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1011

Epoch 4292/5000

35/35 [==============================] - 0s 684us/step - loss: 0.1020

Epoch 4293/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1029

Epoch 4294/5000

35/35 [==============================] - 0s 661us/step - loss: 0.1035

Epoch 4295/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1032

Epoch 4296/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1027

Epoch 4297/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1024

Epoch 4298/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1021

Epoch 4299/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1021

Epoch 4300/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1020

Epoch 4301/5000

35/35 [==============================] - 0s 721us/step - loss: 0.1019

Epoch 4302/5000

35/35 [==============================] - 0s 661us/step - loss: 0.1020

Epoch 4303/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1019

Epoch 4304/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1017

Epoch 4305/5000

35/35 [==============================] - 0s 533us/step - loss: 0.1018

Epoch 4306/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1021

Epoch 4307/5000

35/35 [==============================] - 0s 555us/step - loss: 0.1019

Epoch 4308/5000

35/35 [==============================] - 0s 561us/step - loss: 0.1017

Epoch 4309/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1015

Epoch 4310/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1011

Epoch 4311/5000

35/35 [==============================] - 0s 691us/step - loss: 0.1011

Epoch 4312/5000

35/35 [==============================] - 0s 643us/step - loss: 0.1024

Epoch 4313/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1012

Epoch 4314/5000

35/35 [==============================] - 0s 637us/step - loss: 0.1007

Epoch 4315/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1006

Epoch 4316/5000

35/35 [==============================] - 0s 586us/step - loss: 0.1000

Epoch 4317/5000

35/35 [==============================] - 0s 748us/step - loss: 0.1000

Epoch 4318/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1003

Epoch 4319/5000

35/35 [==============================] - 0s 640us/step - loss: 0.1008

Epoch 4320/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1004

Epoch 4321/5000

35/35 [==============================] - 0s 716us/step - loss: 0.0999

Epoch 4322/5000

35/35 [==============================] - 0s 695us/step - loss: 0.0999

Epoch 4323/5000

35/35 [==============================] - 0s 616us/step - loss: 0.0998

Epoch 4324/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1000

Epoch 4325/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1001

Epoch 4326/5000

35/35 [==============================] - 0s 550us/step - loss: 0.0998

Epoch 4327/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0993

Epoch 4328/5000

35/35 [==============================] - 0s 578us/step - loss: 0.0993

Epoch 4329/5000

35/35 [==============================] - 0s 644us/step - loss: 0.0993

Epoch 4330/5000

35/35 [==============================] - 0s 677us/step - loss: 0.0994

Epoch 4331/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1000

Epoch 4332/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1003

Epoch 4333/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1004

Epoch 4334/5000

35/35 [==============================] - 0s 587us/step - loss: 0.1005

Epoch 4335/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1004

Epoch 4336/5000

35/35 [==============================] - 0s 539us/step - loss: 0.1014

Epoch 4337/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1010

Epoch 4338/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1015

Epoch 4339/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1026

Epoch 4340/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1025

Epoch 4341/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1019

Epoch 4342/5000

35/35 [==============================] - 0s 667us/step - loss: 0.1012

Epoch 4343/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1006

Epoch 4344/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0999

Epoch 4345/5000

35/35 [==============================] - 0s 635us/step - loss: 0.0993

Epoch 4346/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0991

Epoch 4347/5000

35/35 [==============================] - 0s 761us/step - loss: 0.0993

Epoch 4348/5000

35/35 [==============================] - 0s 521us/step - loss: 0.1002

Epoch 4349/5000

35/35 [==============================] - 0s 664us/step - loss: 0.1006

Epoch 4350/5000

35/35 [==============================] - 0s 523us/step - loss: 0.1015

Epoch 4351/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1007

Epoch 4352/5000

35/35 [==============================] - 0s 605us/step - loss: 0.0999

Epoch 4353/5000

35/35 [==============================] - 0s 553us/step - loss: 0.0996

Epoch 4354/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0997

Epoch 4355/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0994

Epoch 4356/5000

35/35 [==============================] - 0s 579us/step - loss: 0.0994

Epoch 4357/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0992

Epoch 4358/5000

35/35 [==============================] - 0s 624us/step - loss: 0.1013

Epoch 4359/5000

35/35 [==============================] - 0s 583us/step - loss: 0.1028

Epoch 4360/5000

35/35 [==============================] - 0s 541us/step - loss: 0.1041

Epoch 4361/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1042

Epoch 4362/5000

35/35 [==============================] - 0s 611us/step - loss: 0.1038

Epoch 4363/5000

35/35 [==============================] - 0s 605us/step - loss: 0.1035

Epoch 4364/5000

35/35 [==============================] - 0s 844us/step - loss: 0.1030

Epoch 4365/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1019

Epoch 4366/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1013

Epoch 4367/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1014

Epoch 4368/5000

35/35 [==============================] - 0s 703us/step - loss: 0.1025

Epoch 4369/5000

35/35 [==============================] - 0s 675us/step - loss: 0.1038

Epoch 4370/5000

35/35 [==============================] - 0s 562us/step - loss: 0.1034

Epoch 4371/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1024

Epoch 4372/5000

35/35 [==============================] - 0s 639us/step - loss: 0.1019

Epoch 4373/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1012

Epoch 4374/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1008

Epoch 4375/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1008

Epoch 4376/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1004

Epoch 4377/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1010

Epoch 4378/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1027

Epoch 4379/5000

35/35 [==============================] - 0s 549us/step - loss: 0.1062

Epoch 4380/5000

35/35 [==============================] - 0s 535us/step - loss: 0.1081

Epoch 4381/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1080

Epoch 4382/5000

35/35 [==============================] - 0s 547us/step - loss: 0.1075

Epoch 4383/5000

35/35 [==============================] - 0s 536us/step - loss: 0.1068

Epoch 4384/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1058

Epoch 4385/5000

35/35 [==============================] - 0s 548us/step - loss: 0.1064

Epoch 4386/5000

35/35 [==============================] - 0s 534us/step - loss: 0.1057

Epoch 4387/5000

35/35 [==============================] - 0s 589us/step - loss: 0.1057

Epoch 4388/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1056

Epoch 4389/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1052

Epoch 4390/5000

35/35 [==============================] - 0s 633us/step - loss: 0.1042

Epoch 4391/5000

35/35 [==============================] - 0s 661us/step - loss: 0.1032

Epoch 4392/5000

35/35 [==============================] - 0s 598us/step - loss: 0.1020

Epoch 4393/5000

35/35 [==============================] - 0s 569us/step - loss: 0.1007

Epoch 4394/5000

35/35 [==============================] - 0s 945us/step - loss: 0.0986

Epoch 4395/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0977

Epoch 4396/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0982

Epoch 4397/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0993

Epoch 4398/5000

35/35 [==============================] - 0s 618us/step - loss: 0.0999

Epoch 4399/5000

35/35 [==============================] - 0s 576us/step - loss: 0.1011

Epoch 4400/5000

35/35 [==============================] - 0s 552us/step - loss: 0.1025

Epoch 4401/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1032

Epoch 4402/5000

35/35 [==============================] - 0s 584us/step - loss: 0.1043

Epoch 4403/5000

35/35 [==============================] - 0s 527us/step - loss: 0.1052

Epoch 4404/5000

35/35 [==============================] - 0s 520us/step - loss: 0.1055

Epoch 4405/5000

35/35 [==============================] - 0s 599us/step - loss: 0.1056

Epoch 4406/5000

35/35 [==============================] - 0s 645us/step - loss: 0.1056

Epoch 4407/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1058

Epoch 4408/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1061

Epoch 4409/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1046

Epoch 4410/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1019

Epoch 4411/5000

35/35 [==============================] - 0s 767us/step - loss: 0.1004

Epoch 4412/5000

35/35 [==============================] - 0s 615us/step - loss: 0.0993

Epoch 4413/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0990

Epoch 4414/5000

35/35 [==============================] - 0s 659us/step - loss: 0.0988

Epoch 4415/5000

35/35 [==============================] - 0s 576us/step - loss: 0.0984

Epoch 4416/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1002

Epoch 4417/5000

35/35 [==============================] - 0s 595us/step - loss: 0.0997

Epoch 4418/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0994

Epoch 4419/5000

35/35 [==============================] - 0s 615us/step - loss: 0.0999

Epoch 4420/5000

35/35 [==============================] - 0s 537us/step - loss: 0.1002

Epoch 4421/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1003

Epoch 4422/5000

35/35 [==============================] - 0s 544us/step - loss: 0.0997

Epoch 4423/5000

35/35 [==============================] - 0s 572us/step - loss: 0.0989

Epoch 4424/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0986

Epoch 4425/5000

35/35 [==============================] - 0s 541us/step - loss: 0.0982

Epoch 4426/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0984

Epoch 4427/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0984

Epoch 4428/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0988

Epoch 4429/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0980

Epoch 4430/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0979

Epoch 4431/5000

35/35 [==============================] - 0s 638us/step - loss: 0.0977

Epoch 4432/5000

35/35 [==============================] - 0s 568us/step - loss: 0.0981

Epoch 4433/5000

35/35 [==============================] - 0s 687us/step - loss: 0.0987

Epoch 4434/5000

35/35 [==============================] - 0s 592us/step - loss: 0.1006

Epoch 4435/5000

35/35 [==============================] - 0s 579us/step - loss: 0.1013

Epoch 4436/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1009

Epoch 4437/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1000

Epoch 4438/5000

35/35 [==============================] - 0s 551us/step - loss: 0.0993

Epoch 4439/5000

35/35 [==============================] - 0s 590us/step - loss: 0.0993

Epoch 4440/5000

35/35 [==============================] - 0s 617us/step - loss: 0.0997

Epoch 4441/5000

35/35 [==============================] - 0s 720us/step - loss: 0.1003

Epoch 4442/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1003

Epoch 4443/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0996

Epoch 4444/5000

35/35 [==============================] - 0s 624us/step - loss: 0.0989

Epoch 4445/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0988

Epoch 4446/5000

35/35 [==============================] - 0s 658us/step - loss: 0.0989

Epoch 4447/5000

35/35 [==============================] - 0s 708us/step - loss: 0.0992

Epoch 4448/5000

35/35 [==============================] - 0s 574us/step - loss: 0.0999

Epoch 4449/5000

35/35 [==============================] - 0s 651us/step - loss: 0.1006

Epoch 4450/5000

35/35 [==============================] - 0s 572us/step - loss: 0.1010

Epoch 4451/5000

35/35 [==============================] - 0s 604us/step - loss: 0.1009

Epoch 4452/5000

35/35 [==============================] - 0s 600us/step - loss: 0.1007

Epoch 4453/5000

35/35 [==============================] - 0s 602us/step - loss: 0.1003

Epoch 4454/5000

35/35 [==============================] - 0s 564us/step - loss: 0.0998

Epoch 4455/5000

35/35 [==============================] - 0s 591us/step - loss: 0.0996

Epoch 4456/5000

35/35 [==============================] - 0s 622us/step - loss: 0.0998

Epoch 4457/5000

35/35 [==============================] - 0s 602us/step - loss: 0.0999

Epoch 4458/5000

35/35 [==============================] - 0s 793us/step - loss: 0.1000

Epoch 4459/5000

35/35 [==============================] - 0s 550us/step - loss: 0.1005

Epoch 4460/5000

35/35 [==============================] - 0s 671us/step - loss: 0.1010

Epoch 4461/5000

35/35 [==============================] - 0s 618us/step - loss: 0.1012

Epoch 4462/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1006

Epoch 4463/5000

35/35 [==============================] - 0s 585us/step - loss: 0.1004

Epoch 4464/5000

35/35 [==============================] - 0s 700us/step - loss: 0.1000

Epoch 4465/5000

35/35 [==============================] - 0s 608us/step - loss: 0.1002

Epoch 4466/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0997

Epoch 4467/5000

35/35 [==============================] - 0s 527us/step - loss: 0.0995

Epoch 4468/5000

35/35 [==============================] - 0s 558us/step - loss: 0.0998

Epoch 4469/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0994

Epoch 4470/5000

35/35 [==============================] - 0s 552us/step - loss: 0.0996

Epoch 4471/5000

35/35 [==============================] - 0s 519us/step - loss: 0.1003

Epoch 4472/5000

35/35 [==============================] - 0s 616us/step - loss: 0.1013

Epoch 4473/5000

35/35 [==============================] - 0s 575us/step - loss: 0.1026

Epoch 4474/5000

35/35 [==============================] - 0s 571us/step - loss: 0.1033

Epoch 4475/5000

35/35 [==============================] - 0s 563us/step - loss: 0.1031

Epoch 4476/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1020

Epoch 4477/5000

35/35 [==============================] - 0s 498us/step - loss: 0.0999

Epoch 4478/5000

35/35 [==============================] - 0s 640us/step - loss: 0.0982

Epoch 4479/5000

35/35 [==============================] - 0s 653us/step - loss: 0.0985

Epoch 4480/5000

35/35 [==============================] - 0s 612us/step - loss: 0.1003

Epoch 4481/5000

35/35 [==============================] - 0s 577us/step - loss: 0.1003

Epoch 4482/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0990

Epoch 4483/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0978

Epoch 4484/5000

35/35 [==============================] - 0s 616us/step - loss: 0.0985

Epoch 4485/5000

35/35 [==============================] - 0s 582us/step - loss: 0.0984

Epoch 4486/5000

35/35 [==============================] - 0s 606us/step - loss: 0.0983

Epoch 4487/5000

35/35 [==============================] - 0s 650us/step - loss: 0.0985

Epoch 4488/5000

35/35 [==============================] - 0s 914us/step - loss: 0.0984

Epoch 4489/5000

35/35 [==============================] - 0s 722us/step - loss: 0.0981

Epoch 4490/5000

35/35 [==============================] - 0s 761us/step - loss: 0.0979

Epoch 4491/5000

35/35 [==============================] - 0s 629us/step - loss: 0.0982

Epoch 4492/5000

35/35 [==============================] - 0s 637us/step - loss: 0.0981

Epoch 4493/5000

35/35 [==============================] - 0s 615us/step - loss: 0.0981

Epoch 4494/5000

35/35 [==============================] - 0s 656us/step - loss: 0.0980

Epoch 4495/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0980

Epoch 4496/5000

35/35 [==============================] - 0s 632us/step - loss: 0.0985

Epoch 4497/5000

35/35 [==============================] - 0s 593us/step - loss: 0.0990

Epoch 4498/5000

35/35 [==============================] - 0s 592us/step - loss: 0.0999

Epoch 4499/5000

35/35 [==============================] - 0s 557us/step - loss: 0.1001

Epoch 4500/5000

35/35 [==============================] - 0s 607us/step - loss: 0.0998

Epoch 4501/5000

35/35 [==============================] - 0s 634us/step - loss: 0.1012

Epoch 4502/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0999

Epoch 4503/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0994

Epoch 4504/5000

35/35 [==============================] - 0s 752us/step - loss: 0.0990

Epoch 4505/5000

35/35 [==============================] - 0s 599us/step - loss: 0.0986

Epoch 4506/5000

35/35 [==============================] - 0s 607us/step - loss: 0.0979

Epoch 4507/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0971

Epoch 4508/5000

35/35 [==============================] - 0s 583us/step - loss: 0.0974

Epoch 4509/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0970

Epoch 4510/5000

35/35 [==============================] - 0s 549us/step - loss: 0.0970

Epoch 4511/5000

35/35 [==============================] - 0s 568us/step - loss: 0.0965

Epoch 4512/5000

35/35 [==============================] - 0s 607us/step - loss: 0.0966

Epoch 4513/5000

35/35 [==============================] - 0s 544us/step - loss: 0.0976

Epoch 4514/5000

35/35 [==============================] - 0s 537us/step - loss: 0.0987

Epoch 4515/5000

35/35 [==============================] - 0s 647us/step - loss: 0.0998

Epoch 4516/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1006

Epoch 4517/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1010

Epoch 4518/5000

35/35 [==============================] - 0s 556us/step - loss: 0.1016

Epoch 4519/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1020

Epoch 4520/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1016

Epoch 4521/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1012

Epoch 4522/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1004

Epoch 4523/5000

35/35 [==============================] - 0s 618us/step - loss: 0.0995

Epoch 4524/5000

35/35 [==============================] - 0s 590us/step - loss: 0.0993

Epoch 4525/5000

35/35 [==============================] - 0s 669us/step - loss: 0.0990

Epoch 4526/5000

35/35 [==============================] - 0s 552us/step - loss: 0.0991

Epoch 4527/5000

35/35 [==============================] - 0s 626us/step - loss: 0.0985

Epoch 4528/5000

35/35 [==============================] - 0s 625us/step - loss: 0.0980

Epoch 4529/5000

35/35 [==============================] - 0s 633us/step - loss: 0.0975

Epoch 4530/5000

35/35 [==============================] - 0s 645us/step - loss: 0.0972

Epoch 4531/5000

35/35 [==============================] - 0s 579us/step - loss: 0.0980

Epoch 4532/5000

35/35 [==============================] - 0s 605us/step - loss: 0.0983

Epoch 4533/5000

35/35 [==============================] - 0s 634us/step - loss: 0.0983

Epoch 4534/5000

35/35 [==============================] - 0s 810us/step - loss: 0.0978

Epoch 4535/5000

35/35 [==============================] - 0s 582us/step - loss: 0.0970

Epoch 4536/5000

35/35 [==============================] - 0s 586us/step - loss: 0.0969

Epoch 4537/5000

35/35 [==============================] - 0s 563us/step - loss: 0.0967

Epoch 4538/5000

35/35 [==============================] - 0s 533us/step - loss: 0.0968

Epoch 4539/5000

35/35 [==============================] - 0s 553us/step - loss: 0.0973

Epoch 4540/5000

35/35 [==============================] - 0s 545us/step - loss: 0.0977

Epoch 4541/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0979

Epoch 4542/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0976

Epoch 4543/5000

35/35 [==============================] - 0s 604us/step - loss: 0.0980

Epoch 4544/5000

35/35 [==============================] - 0s 589us/step - loss: 0.0975

Epoch 4545/5000

35/35 [==============================] - 0s 587us/step - loss: 0.0974

Epoch 4546/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0971

Epoch 4547/5000

35/35 [==============================] - 0s 578us/step - loss: 0.0974

Epoch 4548/5000

35/35 [==============================] - 0s 537us/step - loss: 0.0979

Epoch 4549/5000

35/35 [==============================] - 0s 653us/step - loss: 0.0967

Epoch 4550/5000

35/35 [==============================] - 0s 718us/step - loss: 0.0967

Epoch 4551/5000

35/35 [==============================] - 0s 618us/step - loss: 0.0977

Epoch 4552/5000

35/35 [==============================] - 0s 805us/step - loss: 0.0989

Epoch 4553/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0996

Epoch 4554/5000

35/35 [==============================] - 0s 580us/step - loss: 0.1001

Epoch 4555/5000

35/35 [==============================] - 0s 621us/step - loss: 0.1002

Epoch 4556/5000

35/35 [==============================] - 0s 659us/step - loss: 0.1000

Epoch 4557/5000

35/35 [==============================] - 0s 593us/step - loss: 0.1000

Epoch 4558/5000

35/35 [==============================] - 0s 545us/step - loss: 0.1001

Epoch 4559/5000

35/35 [==============================] - 0s 578us/step - loss: 0.0999

Epoch 4560/5000

35/35 [==============================] - 0s 574us/step - loss: 0.0995

Epoch 4561/5000

35/35 [==============================] - 0s 672us/step - loss: 0.0988

Epoch 4562/5000

35/35 [==============================] - 0s 626us/step - loss: 0.0982

Epoch 4563/5000

35/35 [==============================] - 0s 678us/step - loss: 0.0972

Epoch 4564/5000

35/35 [==============================] - 0s 563us/step - loss: 0.0970

Epoch 4565/5000

35/35 [==============================] - 0s 613us/step - loss: 0.0977

Epoch 4566/5000

35/35 [==============================] - 0s 579us/step - loss: 0.0983

Epoch 4567/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0985

Epoch 4568/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0988

Epoch 4569/5000

35/35 [==============================] - 0s 546us/step - loss: 0.0993

Epoch 4570/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0993

Epoch 4571/5000

35/35 [==============================] - 0s 712us/step - loss: 0.0996

Epoch 4572/5000

35/35 [==============================] - 0s 592us/step - loss: 0.0989

Epoch 4573/5000

35/35 [==============================] - 0s 672us/step - loss: 0.0982

Epoch 4574/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0974

Epoch 4575/5000

35/35 [==============================] - 0s 576us/step - loss: 0.0969

Epoch 4576/5000

35/35 [==============================] - 0s 614us/step - loss: 0.0970

Epoch 4577/5000

35/35 [==============================] - 0s 614us/step - loss: 0.0974

Epoch 4578/5000

35/35 [==============================] - 0s 620us/step - loss: 0.0978

Epoch 4579/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0975

Epoch 4580/5000

35/35 [==============================] - 0s 831us/step - loss: 0.0971

Epoch 4581/5000

35/35 [==============================] - 0s 546us/step - loss: 0.0975

Epoch 4582/5000

35/35 [==============================] - 0s 530us/step - loss: 0.0972

Epoch 4583/5000

35/35 [==============================] - 0s 524us/step - loss: 0.0976

Epoch 4584/5000

35/35 [==============================] - 0s 615us/step - loss: 0.0980

Epoch 4585/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0983

Epoch 4586/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0994

Epoch 4587/5000

35/35 [==============================] - 0s 564us/step - loss: 0.0989

Epoch 4588/5000

35/35 [==============================] - 0s 528us/step - loss: 0.0975

Epoch 4589/5000

35/35 [==============================] - 0s 582us/step - loss: 0.0965

Epoch 4590/5000

35/35 [==============================] - 0s 513us/step - loss: 0.0963

Epoch 4591/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0964

Epoch 4592/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0961

Epoch 4593/5000

35/35 [==============================] - 0s 529us/step - loss: 0.0956

Epoch 4594/5000

35/35 [==============================] - 0s 564us/step - loss: 0.0954

Epoch 4595/5000

35/35 [==============================] - 0s 552us/step - loss: 0.0955

Epoch 4596/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0956

Epoch 4597/5000

35/35 [==============================] - 0s 558us/step - loss: 0.0960

Epoch 4598/5000

35/35 [==============================] - 0s 538us/step - loss: 0.0975

Epoch 4599/5000

35/35 [==============================] - 0s 685us/step - loss: 0.0982

Epoch 4600/5000

35/35 [==============================] - 0s 662us/step - loss: 0.0973

Epoch 4601/5000

35/35 [==============================] - 0s 649us/step - loss: 0.0954

Epoch 4602/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0951

Epoch 4603/5000

35/35 [==============================] - 0s 576us/step - loss: 0.0966

Epoch 4604/5000

35/35 [==============================] - 0s 547us/step - loss: 0.0976

Epoch 4605/5000

35/35 [==============================] - 0s 655us/step - loss: 0.0984

Epoch 4606/5000

35/35 [==============================] - 0s 692us/step - loss: 0.0984

Epoch 4607/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0985

Epoch 4608/5000

35/35 [==============================] - 0s 660us/step - loss: 0.0985

Epoch 4609/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0984

Epoch 4610/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0985

Epoch 4611/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0987

Epoch 4612/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0990

Epoch 4613/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0992

Epoch 4614/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0995

Epoch 4615/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0983

Epoch 4616/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0975

Epoch 4617/5000

35/35 [==============================] - 0s 586us/step - loss: 0.0971

Epoch 4618/5000

35/35 [==============================] - 0s 617us/step - loss: 0.0970

Epoch 4619/5000

35/35 [==============================] - 0s 540us/step - loss: 0.0967

Epoch 4620/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0969

Epoch 4621/5000

35/35 [==============================] - 0s 583us/step - loss: 0.0997

Epoch 4622/5000

35/35 [==============================] - 0s 558us/step - loss: 0.1005

Epoch 4623/5000

35/35 [==============================] - 0s 616us/step - loss: 0.0998

Epoch 4624/5000

35/35 [==============================] - 0s 595us/step - loss: 0.1002

Epoch 4625/5000

35/35 [==============================] - 0s 625us/step - loss: 0.1008

Epoch 4626/5000

35/35 [==============================] - 0s 578us/step - loss: 0.1009

Epoch 4627/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1002

Epoch 4628/5000

35/35 [==============================] - 0s 721us/step - loss: 0.0998

Epoch 4629/5000

35/35 [==============================] - 0s 586us/step - loss: 0.0991

Epoch 4630/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0985

Epoch 4631/5000

35/35 [==============================] - 0s 606us/step - loss: 0.0984

Epoch 4632/5000

35/35 [==============================] - 0s 665us/step - loss: 0.0968

Epoch 4633/5000

35/35 [==============================] - 0s 544us/step - loss: 0.0957

Epoch 4634/5000

35/35 [==============================] - 0s 522us/step - loss: 0.0956

Epoch 4635/5000

35/35 [==============================] - 0s 545us/step - loss: 0.0973

Epoch 4636/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0981

Epoch 4637/5000

35/35 [==============================] - 0s 701us/step - loss: 0.0977

Epoch 4638/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0975

Epoch 4639/5000

35/35 [==============================] - 0s 550us/step - loss: 0.0967

Epoch 4640/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0954

Epoch 4641/5000

35/35 [==============================] - 0s 582us/step - loss: 0.0948

Epoch 4642/5000

35/35 [==============================] - 0s 560us/step - loss: 0.0956

Epoch 4643/5000

35/35 [==============================] - 0s 524us/step - loss: 0.0964

Epoch 4644/5000

35/35 [==============================] - 0s 618us/step - loss: 0.0969

Epoch 4645/5000

35/35 [==============================] - 0s 556us/step - loss: 0.0964

Epoch 4646/5000

35/35 [==============================] - 0s 736us/step - loss: 0.0988

Epoch 4647/5000

35/35 [==============================] - 0s 800us/step - loss: 0.0992

Epoch 4648/5000

35/35 [==============================] - 0s 635us/step - loss: 0.0999

Epoch 4649/5000

35/35 [==============================] - 0s 500us/step - loss: 0.1012

Epoch 4650/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1018

Epoch 4651/5000

35/35 [==============================] - 0s 613us/step - loss: 0.1017

Epoch 4652/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1012

Epoch 4653/5000

35/35 [==============================] - 0s 542us/step - loss: 0.1022

Epoch 4654/5000

35/35 [==============================] - 0s 566us/step - loss: 0.1021

Epoch 4655/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1015

Epoch 4656/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1008

Epoch 4657/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0996

Epoch 4658/5000

35/35 [==============================] - 0s 525us/step - loss: 0.0975

Epoch 4659/5000

35/35 [==============================] - 0s 527us/step - loss: 0.0965

Epoch 4660/5000

35/35 [==============================] - 0s 741us/step - loss: 0.0958

Epoch 4661/5000

35/35 [==============================] - 0s 551us/step - loss: 0.0961

Epoch 4662/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0954

Epoch 4663/5000

35/35 [==============================] - 0s 629us/step - loss: 0.0950

Epoch 4664/5000

35/35 [==============================] - 0s 662us/step - loss: 0.0943

Epoch 4665/5000

35/35 [==============================] - 0s 603us/step - loss: 0.0944

Epoch 4666/5000

35/35 [==============================] - 0s 621us/step - loss: 0.0942

Epoch 4667/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0946

Epoch 4668/5000

35/35 [==============================] - 0s 550us/step - loss: 0.0963

Epoch 4669/5000

35/35 [==============================] - 0s 641us/step - loss: 0.0972

Epoch 4670/5000

35/35 [==============================] - 0s 703us/step - loss: 0.0974

Epoch 4671/5000

35/35 [==============================] - 0s 536us/step - loss: 0.0973

Epoch 4672/5000

35/35 [==============================] - 0s 532us/step - loss: 0.0970

Epoch 4673/5000

35/35 [==============================] - 0s 726us/step - loss: 0.0973

Epoch 4674/5000

35/35 [==============================] - 0s 625us/step - loss: 0.0984

Epoch 4675/5000

35/35 [==============================] - 0s 741us/step - loss: 0.0984

Epoch 4676/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0979

Epoch 4677/5000

35/35 [==============================] - 0s 651us/step - loss: 0.0971

Epoch 4678/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0960

Epoch 4679/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0950

Epoch 4680/5000

35/35 [==============================] - 0s 547us/step - loss: 0.0958

Epoch 4681/5000

35/35 [==============================] - 0s 598us/step - loss: 0.0971

Epoch 4682/5000

35/35 [==============================] - 0s 671us/step - loss: 0.0974

Epoch 4683/5000

35/35 [==============================] - 0s 583us/step - loss: 0.0982

Epoch 4684/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0973

Epoch 4685/5000

35/35 [==============================] - 0s 589us/step - loss: 0.0969

Epoch 4686/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0968

Epoch 4687/5000

35/35 [==============================] - 0s 518us/step - loss: 0.0962

Epoch 4688/5000

35/35 [==============================] - 0s 692us/step - loss: 0.0952

Epoch 4689/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0944

Epoch 4690/5000

35/35 [==============================] - 0s 537us/step - loss: 0.0948

Epoch 4691/5000

35/35 [==============================] - 0s 513us/step - loss: 0.0944

Epoch 4692/5000

35/35 [==============================] - 0s 641us/step - loss: 0.0940

Epoch 4693/5000

35/35 [==============================] - 0s 663us/step - loss: 0.0943

Epoch 4694/5000

35/35 [==============================] - 0s 766us/step - loss: 0.0947

Epoch 4695/5000

35/35 [==============================] - 0s 699us/step - loss: 0.0942

Epoch 4696/5000

35/35 [==============================] - 0s 533us/step - loss: 0.0936

Epoch 4697/5000

35/35 [==============================] - 0s 529us/step - loss: 0.0934

Epoch 4698/5000

35/35 [==============================] - 0s 546us/step - loss: 0.0934

Epoch 4699/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0938

Epoch 4700/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0970

Epoch 4701/5000

35/35 [==============================] - 0s 585us/step - loss: 0.0976

Epoch 4702/5000

35/35 [==============================] - 0s 661us/step - loss: 0.0970

Epoch 4703/5000

35/35 [==============================] - 0s 609us/step - loss: 0.0948

Epoch 4704/5000

35/35 [==============================] - 0s 570us/step - loss: 0.0944

Epoch 4705/5000

35/35 [==============================] - 0s 511us/step - loss: 0.0947

Epoch 4706/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0954

Epoch 4707/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0957

Epoch 4708/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0964

Epoch 4709/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0960

Epoch 4710/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0958

Epoch 4711/5000

35/35 [==============================] - 0s 656us/step - loss: 0.0954

Epoch 4712/5000

35/35 [==============================] - 0s 620us/step - loss: 0.0954

Epoch 4713/5000

35/35 [==============================] - 0s 579us/step - loss: 0.0945

Epoch 4714/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0948

Epoch 4715/5000

35/35 [==============================] - 0s 647us/step - loss: 0.0941

Epoch 4716/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0940

Epoch 4717/5000

35/35 [==============================] - 0s 585us/step - loss: 0.0946

Epoch 4718/5000

35/35 [==============================] - 0s 591us/step - loss: 0.0953

Epoch 4719/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0969

Epoch 4720/5000

35/35 [==============================] - 0s 579us/step - loss: 0.0982

Epoch 4721/5000

35/35 [==============================] - 0s 547us/step - loss: 0.0992

Epoch 4722/5000

35/35 [==============================] - 0s 636us/step - loss: 0.0999

Epoch 4723/5000

35/35 [==============================] - 0s 610us/step - loss: 0.1000

Epoch 4724/5000

35/35 [==============================] - 0s 582us/step - loss: 0.1001

Epoch 4725/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1005

Epoch 4726/5000

35/35 [==============================] - 0s 625us/step - loss: 0.0984

Epoch 4727/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0970

Epoch 4728/5000

35/35 [==============================] - 0s 597us/step - loss: 0.0949

Epoch 4729/5000

35/35 [==============================] - 0s 595us/step - loss: 0.0943

Epoch 4730/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0930

Epoch 4731/5000

35/35 [==============================] - 0s 589us/step - loss: 0.0942

Epoch 4732/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0966

Epoch 4733/5000

35/35 [==============================] - 0s 588us/step - loss: 0.1000

Epoch 4734/5000

35/35 [==============================] - 0s 567us/step - loss: 0.1047

Epoch 4735/5000

35/35 [==============================] - 0s 631us/step - loss: 0.1096

Epoch 4736/5000

35/35 [==============================] - 0s 650us/step - loss: 0.1097

Epoch 4737/5000

35/35 [==============================] - 0s 690us/step - loss: 0.1077

Epoch 4738/5000

35/35 [==============================] - 0s 638us/step - loss: 0.1055

Epoch 4739/5000

35/35 [==============================] - 0s 570us/step - loss: 0.1024

Epoch 4740/5000

35/35 [==============================] - 0s 564us/step - loss: 0.1004

Epoch 4741/5000

35/35 [==============================] - 0s 669us/step - loss: 0.1004

Epoch 4742/5000

35/35 [==============================] - 0s 681us/step - loss: 0.1010

Epoch 4743/5000

35/35 [==============================] - 0s 911us/step - loss: 0.1005

Epoch 4744/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1008

Epoch 4745/5000

35/35 [==============================] - 0s 568us/step - loss: 0.1017

Epoch 4746/5000

35/35 [==============================] - 0s 560us/step - loss: 0.1026

Epoch 4747/5000

35/35 [==============================] - 0s 551us/step - loss: 0.1035

Epoch 4748/5000

35/35 [==============================] - 0s 565us/step - loss: 0.1020

Epoch 4749/5000

35/35 [==============================] - 0s 528us/step - loss: 0.0996

Epoch 4750/5000

35/35 [==============================] - 0s 620us/step - loss: 0.0994

Epoch 4751/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0997

Epoch 4752/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0984

Epoch 4753/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0961

Epoch 4754/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0945

Epoch 4755/5000

35/35 [==============================] - 0s 700us/step - loss: 0.0947

Epoch 4756/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0955

Epoch 4757/5000

35/35 [==============================] - 0s 644us/step - loss: 0.0963

Epoch 4758/5000

35/35 [==============================] - 0s 560us/step - loss: 0.0972

Epoch 4759/5000

35/35 [==============================] - 0s 622us/step - loss: 0.0966

Epoch 4760/5000

35/35 [==============================] - 0s 694us/step - loss: 0.0956

Epoch 4761/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0949

Epoch 4762/5000

35/35 [==============================] - 0s 572us/step - loss: 0.0949

Epoch 4763/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0951

Epoch 4764/5000

35/35 [==============================] - 0s 647us/step - loss: 0.0954

Epoch 4765/5000

35/35 [==============================] - 0s 676us/step - loss: 0.0953

Epoch 4766/5000

35/35 [==============================] - 0s 521us/step - loss: 0.0953

Epoch 4767/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0944

Epoch 4768/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0941

Epoch 4769/5000

35/35 [==============================] - 0s 731us/step - loss: 0.0935

Epoch 4770/5000

35/35 [==============================] - 0s 557us/step - loss: 0.0928

Epoch 4771/5000

35/35 [==============================] - 0s 595us/step - loss: 0.0929

Epoch 4772/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0933

Epoch 4773/5000

35/35 [==============================] - 0s 534us/step - loss: 0.0922

Epoch 4774/5000

35/35 [==============================] - 0s 543us/step - loss: 0.0922

Epoch 4775/5000

35/35 [==============================] - 0s 677us/step - loss: 0.0942

Epoch 4776/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0977

Epoch 4777/5000

35/35 [==============================] - 0s 556us/step - loss: 0.0982

Epoch 4778/5000

35/35 [==============================] - 0s 587us/step - loss: 0.0974

Epoch 4779/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0952

Epoch 4780/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0937

Epoch 4781/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0942

Epoch 4782/5000

35/35 [==============================] - 0s 575us/step - loss: 0.0944

Epoch 4783/5000

35/35 [==============================] - 0s 607us/step - loss: 0.0957

Epoch 4784/5000

35/35 [==============================] - 0s 635us/step - loss: 0.0966

Epoch 4785/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0958

Epoch 4786/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0946

Epoch 4787/5000

35/35 [==============================] - 0s 707us/step - loss: 0.0940

Epoch 4788/5000

35/35 [==============================] - 0s 751us/step - loss: 0.0935

Epoch 4789/5000

35/35 [==============================] - 0s 913us/step - loss: 0.0929

Epoch 4790/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0929

Epoch 4791/5000

35/35 [==============================] - 0s 621us/step - loss: 0.0938

Epoch 4792/5000

35/35 [==============================] - 0s 516us/step - loss: 0.0956

Epoch 4793/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0965

Epoch 4794/5000

35/35 [==============================] - 0s 716us/step - loss: 0.0962

Epoch 4795/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0960

Epoch 4796/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0949

Epoch 4797/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0925

Epoch 4798/5000

35/35 [==============================] - 0s 529us/step - loss: 0.0922

Epoch 4799/5000

35/35 [==============================] - 0s 540us/step - loss: 0.0933

Epoch 4800/5000

35/35 [==============================] - 0s 553us/step - loss: 0.0954

Epoch 4801/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0962

Epoch 4802/5000

35/35 [==============================] - 0s 518us/step - loss: 0.0967

Epoch 4803/5000

35/35 [==============================] - 0s 640us/step - loss: 0.0972

Epoch 4804/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0969

Epoch 4805/5000

35/35 [==============================] - 0s 679us/step - loss: 0.0952

Epoch 4806/5000

35/35 [==============================] - 0s 544us/step - loss: 0.0942

Epoch 4807/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0929

Epoch 4808/5000

35/35 [==============================] - 0s 515us/step - loss: 0.0916

Epoch 4809/5000

35/35 [==============================] - 0s 528us/step - loss: 0.0910

Epoch 4810/5000

35/35 [==============================] - 0s 595us/step - loss: 0.0913

Epoch 4811/5000

35/35 [==============================] - 0s 588us/step - loss: 0.0933

Epoch 4812/5000

35/35 [==============================] - 0s 517us/step - loss: 0.0956

Epoch 4813/5000

35/35 [==============================] - 0s 578us/step - loss: 0.0969

Epoch 4814/5000

35/35 [==============================] - 0s 587us/step - loss: 0.0965

Epoch 4815/5000

35/35 [==============================] - 0s 535us/step - loss: 0.0936

Epoch 4816/5000

35/35 [==============================] - 0s 834us/step - loss: 0.0921

Epoch 4817/5000

35/35 [==============================] - 0s 526us/step - loss: 0.0909

Epoch 4818/5000

35/35 [==============================] - 0s 539us/step - loss: 0.0932

Epoch 4819/5000

35/35 [==============================] - 0s 520us/step - loss: 0.0971

Epoch 4820/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0986

Epoch 4821/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0993

Epoch 4822/5000

35/35 [==============================] - 0s 534us/step - loss: 0.0996

Epoch 4823/5000

35/35 [==============================] - 0s 597us/step - loss: 0.1002

Epoch 4824/5000

35/35 [==============================] - 0s 573us/step - loss: 0.1006

Epoch 4825/5000

35/35 [==============================] - 0s 531us/step - loss: 0.1011

Epoch 4826/5000

35/35 [==============================] - 0s 594us/step - loss: 0.1007

Epoch 4827/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0996

Epoch 4828/5000

35/35 [==============================] - 0s 546us/step - loss: 0.0988

Epoch 4829/5000

35/35 [==============================] - 0s 523us/step - loss: 0.0982

Epoch 4830/5000

35/35 [==============================] - 0s 671us/step - loss: 0.0967

Epoch 4831/5000

35/35 [==============================] - 0s 648us/step - loss: 0.0937

Epoch 4832/5000

35/35 [==============================] - 0s 770us/step - loss: 0.0929

Epoch 4833/5000

35/35 [==============================] - 0s 675us/step - loss: 0.0910

Epoch 4834/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0916

Epoch 4835/5000

35/35 [==============================] - 0s 564us/step - loss: 0.0924

Epoch 4836/5000

35/35 [==============================] - 0s 917us/step - loss: 0.0918

Epoch 4837/5000

35/35 [==============================] - 0s 725us/step - loss: 0.0932

Epoch 4838/5000

35/35 [==============================] - 0s 621us/step - loss: 0.0954

Epoch 4839/5000

35/35 [==============================] - 0s 568us/step - loss: 0.0970

Epoch 4840/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0975

Epoch 4841/5000

35/35 [==============================] - 0s 529us/step - loss: 0.0955

Epoch 4842/5000

35/35 [==============================] - 0s 641us/step - loss: 0.0932

Epoch 4843/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0917

Epoch 4844/5000

35/35 [==============================] - 0s 522us/step - loss: 0.0915

Epoch 4845/5000

35/35 [==============================] - 0s 510us/step - loss: 0.0910

Epoch 4846/5000

35/35 [==============================] - 0s 640us/step - loss: 0.0904

Epoch 4847/5000

35/35 [==============================] - 0s 547us/step - loss: 0.0904

Epoch 4848/5000

35/35 [==============================] - 0s 544us/step - loss: 0.0915

Epoch 4849/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0929

Epoch 4850/5000

35/35 [==============================] - 0s 657us/step - loss: 0.0941

Epoch 4851/5000

35/35 [==============================] - 0s 563us/step - loss: 0.0920

Epoch 4852/5000

35/35 [==============================] - 0s 757us/step - loss: 0.0897

Epoch 4853/5000

35/35 [==============================] - 0s 597us/step - loss: 0.0901

Epoch 4854/5000

35/35 [==============================] - 0s 582us/step - loss: 0.0907

Epoch 4855/5000

35/35 [==============================] - 0s 612us/step - loss: 0.0917

Epoch 4856/5000

35/35 [==============================] - 0s 557us/step - loss: 0.0923

Epoch 4857/5000

35/35 [==============================] - 0s 590us/step - loss: 0.0941

Epoch 4858/5000

35/35 [==============================] - 0s 557us/step - loss: 0.0951

Epoch 4859/5000

35/35 [==============================] - 0s 668us/step - loss: 0.0959

Epoch 4860/5000

35/35 [==============================] - 0s 570us/step - loss: 0.0993

Epoch 4861/5000

35/35 [==============================] - 0s 587us/step - loss: 0.0976

Epoch 4862/5000

35/35 [==============================] - 0s 583us/step - loss: 0.0946

Epoch 4863/5000

35/35 [==============================] - 0s 663us/step - loss: 0.0919

Epoch 4864/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0904

Epoch 4865/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0891

Epoch 4866/5000

35/35 [==============================] - 0s 590us/step - loss: 0.0885

Epoch 4867/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0883

Epoch 4868/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0896

Epoch 4869/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0917

Epoch 4870/5000

35/35 [==============================] - 0s 594us/step - loss: 0.0920

Epoch 4871/5000

35/35 [==============================] - 0s 541us/step - loss: 0.0905

Epoch 4872/5000

35/35 [==============================] - 0s 566us/step - loss: 0.0893

Epoch 4873/5000

35/35 [==============================] - 0s 553us/step - loss: 0.0896

Epoch 4874/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0903

Epoch 4875/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0914

Epoch 4876/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0919

Epoch 4877/5000

35/35 [==============================] - 0s 661us/step - loss: 0.0907

Epoch 4878/5000

35/35 [==============================] - 0s 549us/step - loss: 0.0886

Epoch 4879/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0886

Epoch 4880/5000

35/35 [==============================] - 0s 645us/step - loss: 0.0924

Epoch 4881/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0943

Epoch 4882/5000

35/35 [==============================] - 0s 686us/step - loss: 0.0948

Epoch 4883/5000

35/35 [==============================] - 0s 701us/step - loss: 0.0967

Epoch 4884/5000

35/35 [==============================] - 0s 655us/step - loss: 0.0974

Epoch 4885/5000

35/35 [==============================] - 0s 673us/step - loss: 0.0970

Epoch 4886/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0950

Epoch 4887/5000

35/35 [==============================] - 0s 605us/step - loss: 0.0932

Epoch 4888/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0919

Epoch 4889/5000

35/35 [==============================] - 0s 563us/step - loss: 0.0912

Epoch 4890/5000

35/35 [==============================] - 0s 533us/step - loss: 0.0911

Epoch 4891/5000

35/35 [==============================] - 0s 574us/step - loss: 0.0908

Epoch 4892/5000

35/35 [==============================] - 0s 640us/step - loss: 0.0908

Epoch 4893/5000

35/35 [==============================] - 0s 597us/step - loss: 0.0909

Epoch 4894/5000

35/35 [==============================] - 0s 632us/step - loss: 0.0918

Epoch 4895/5000

35/35 [==============================] - 0s 495us/step - loss: 0.0925

Epoch 4896/5000

35/35 [==============================] - 0s 681us/step - loss: 0.0929

Epoch 4897/5000

35/35 [==============================] - 0s 554us/step - loss: 0.0931

Epoch 4898/5000

35/35 [==============================] - 0s 587us/step - loss: 0.0931

Epoch 4899/5000

35/35 [==============================] - 0s 614us/step - loss: 0.0930

Epoch 4900/5000

35/35 [==============================] - 0s 597us/step - loss: 0.0930

Epoch 4901/5000

35/35 [==============================] - 0s 590us/step - loss: 0.0929

Epoch 4902/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0918

Epoch 4903/5000

35/35 [==============================] - 0s 606us/step - loss: 0.0900

Epoch 4904/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0880

Epoch 4905/5000

35/35 [==============================] - 0s 637us/step - loss: 0.0888

Epoch 4906/5000

35/35 [==============================] - 0s 585us/step - loss: 0.0872

Epoch 4907/5000

35/35 [==============================] - 0s 633us/step - loss: 0.0896

Epoch 4908/5000

35/35 [==============================] - 0s 589us/step - loss: 0.0902

Epoch 4909/5000

35/35 [==============================] - 0s 598us/step - loss: 0.0902

Epoch 4910/5000

35/35 [==============================] - 0s 800us/step - loss: 0.0897

Epoch 4911/5000

35/35 [==============================] - 0s 603us/step - loss: 0.0890

Epoch 4912/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0883

Epoch 4913/5000

35/35 [==============================] - 0s 534us/step - loss: 0.0886

Epoch 4914/5000

35/35 [==============================] - 0s 628us/step - loss: 0.0899

Epoch 4915/5000

35/35 [==============================] - 0s 619us/step - loss: 0.0913

Epoch 4916/5000

35/35 [==============================] - 0s 521us/step - loss: 0.0929

Epoch 4917/5000

35/35 [==============================] - 0s 560us/step - loss: 0.0945

Epoch 4918/5000

35/35 [==============================] - 0s 616us/step - loss: 0.0956

Epoch 4919/5000

35/35 [==============================] - 0s 697us/step - loss: 0.0957

Epoch 4920/5000

35/35 [==============================] - 0s 556us/step - loss: 0.0936

Epoch 4921/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0907

Epoch 4922/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0896

Epoch 4923/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0897

Epoch 4924/5000

35/35 [==============================] - 0s 623us/step - loss: 0.0893

Epoch 4925/5000

35/35 [==============================] - 0s 600us/step - loss: 0.0880

Epoch 4926/5000

35/35 [==============================] - 0s 608us/step - loss: 0.0874

Epoch 4927/5000

35/35 [==============================] - 0s 568us/step - loss: 0.0876

Epoch 4928/5000

35/35 [==============================] - 0s 637us/step - loss: 0.0884

Epoch 4929/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0893

Epoch 4930/5000

35/35 [==============================] - 0s 653us/step - loss: 0.0895

Epoch 4931/5000

35/35 [==============================] - 0s 697us/step - loss: 0.0898

Epoch 4932/5000

35/35 [==============================] - 0s 549us/step - loss: 0.0894

Epoch 4933/5000

35/35 [==============================] - 0s 571us/step - loss: 0.0912

Epoch 4934/5000

35/35 [==============================] - 0s 601us/step - loss: 0.0952

Epoch 4935/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0959

Epoch 4936/5000

35/35 [==============================] - 0s 576us/step - loss: 0.0947

Epoch 4937/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0941

Epoch 4938/5000

35/35 [==============================] - 0s 647us/step - loss: 0.0941

Epoch 4939/5000

35/35 [==============================] - 0s 555us/step - loss: 0.0932

Epoch 4940/5000

35/35 [==============================] - 0s 770us/step - loss: 0.0918

Epoch 4941/5000

35/35 [==============================] - 0s 687us/step - loss: 0.0908

Epoch 4942/5000

35/35 [==============================] - 0s 730us/step - loss: 0.0899

Epoch 4943/5000

35/35 [==============================] - 0s 615us/step - loss: 0.0891

Epoch 4944/5000

35/35 [==============================] - 0s 608us/step - loss: 0.0886

Epoch 4945/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0885

Epoch 4946/5000

35/35 [==============================] - 0s 654us/step - loss: 0.0905

Epoch 4947/5000

35/35 [==============================] - 0s 558us/step - loss: 0.0901

Epoch 4948/5000

35/35 [==============================] - 0s 549us/step - loss: 0.0905

Epoch 4949/5000

35/35 [==============================] - 0s 562us/step - loss: 0.0906

Epoch 4950/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0893

Epoch 4951/5000

35/35 [==============================] - 0s 559us/step - loss: 0.0899

Epoch 4952/5000

35/35 [==============================] - 0s 535us/step - loss: 0.0913

Epoch 4953/5000

35/35 [==============================] - 0s 560us/step - loss: 0.0928

Epoch 4954/5000

35/35 [==============================] - 0s 567us/step - loss: 0.0937

Epoch 4955/5000

35/35 [==============================] - 0s 568us/step - loss: 0.0941

Epoch 4956/5000

35/35 [==============================] - 0s 746us/step - loss: 0.0944

Epoch 4957/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0940

Epoch 4958/5000

35/35 [==============================] - 0s 603us/step - loss: 0.0932

Epoch 4959/5000

35/35 [==============================] - 0s 638us/step - loss: 0.0915

Epoch 4960/5000

35/35 [==============================] - 0s 589us/step - loss: 0.0900

Epoch 4961/5000

35/35 [==============================] - 0s 610us/step - loss: 0.0903

Epoch 4962/5000

35/35 [==============================] - 0s 591us/step - loss: 0.0920

Epoch 4963/5000

35/35 [==============================] - 0s 585us/step - loss: 0.0925

Epoch 4964/5000

35/35 [==============================] - 0s 605us/step - loss: 0.0914

Epoch 4965/5000

35/35 [==============================] - 0s 669us/step - loss: 0.0898

Epoch 4966/5000

35/35 [==============================] - 0s 617us/step - loss: 0.0887

Epoch 4967/5000

35/35 [==============================] - 0s 619us/step - loss: 0.0887

Epoch 4968/5000

35/35 [==============================] - 0s 580us/step - loss: 0.0892

Epoch 4969/5000

35/35 [==============================] - 0s 639us/step - loss: 0.0916

Epoch 4970/5000

35/35 [==============================] - 0s 654us/step - loss: 0.0947

Epoch 4971/5000

35/35 [==============================] - 0s 596us/step - loss: 0.0944

Epoch 4972/5000

35/35 [==============================] - 0s 577us/step - loss: 0.0925

Epoch 4973/5000

35/35 [==============================] - 0s 633us/step - loss: 0.0908

Epoch 4974/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0905

Epoch 4975/5000

35/35 [==============================] - 0s 542us/step - loss: 0.0903

Epoch 4976/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0906

Epoch 4977/5000

35/35 [==============================] - 0s 755us/step - loss: 0.0900

Epoch 4978/5000

35/35 [==============================] - 0s 604us/step - loss: 0.0891

Epoch 4979/5000

35/35 [==============================] - 0s 609us/step - loss: 0.0892

Epoch 4980/5000

35/35 [==============================] - 0s 581us/step - loss: 0.0889

Epoch 4981/5000

35/35 [==============================] - 0s 586us/step - loss: 0.0890

Epoch 4982/5000

35/35 [==============================] - 0s 712us/step - loss: 0.0890

Epoch 4983/5000

35/35 [==============================] - 0s 569us/step - loss: 0.0888

Epoch 4984/5000

35/35 [==============================] - 0s 560us/step - loss: 0.0889

Epoch 4985/5000

35/35 [==============================] - 0s 604us/step - loss: 0.0885

Epoch 4986/5000

35/35 [==============================] - 0s 536us/step - loss: 0.0880

Epoch 4987/5000

35/35 [==============================] - 0s 584us/step - loss: 0.0879

Epoch 4988/5000

35/35 [==============================] - 0s 768us/step - loss: 0.0884

Epoch 4989/5000

35/35 [==============================] - 0s 561us/step - loss: 0.0885

Epoch 4990/5000

35/35 [==============================] - 0s 548us/step - loss: 0.0873

Epoch 4991/5000

35/35 [==============================] - 0s 597us/step - loss: 0.0864

Epoch 4992/5000

35/35 [==============================] - 0s 573us/step - loss: 0.0856

Epoch 4993/5000

35/35 [==============================] - 0s 624us/step - loss: 0.0867

Epoch 4994/5000

35/35 [==============================] - 0s 585us/step - loss: 0.0870

Epoch 4995/5000

35/35 [==============================] - 0s 565us/step - loss: 0.0879

Epoch 4996/5000

35/35 [==============================] - 0s 612us/step - loss: 0.0883

Epoch 4997/5000

35/35 [==============================] - 0s 557us/step - loss: 0.0884

Epoch 4998/5000

35/35 [==============================] - 0s 529us/step - loss: 0.0890

Epoch 4999/5000

35/35 [==============================] - 0s 653us/step - loss: 0.0906

Epoch 5000/5000

35/35 [==============================] - 0s 541us/step - loss: 0.0907

In [0]:

# Function to forecast the next difference based on the current month's difference

# Essentially just the a function to reshape input and feed it to the trained algorithm

def forecast_lstm(model, X):

    X = X.reshape(1, 1, len(X))

    yhat = model.predict(X)

    return yhat[0,0]

In [55]:

# Validation on the test data

 

# List with predictions

lstm_predictions = list()

 

# Predictions

for i in range(len(test_scaled)):

   

    # Adjusting the shape in the test data

    X, y = test_scaled[i, 0:-1], test_scaled[i, -1]

   

    # Predicting

    yhat = forecast_lstm(lstm_model, X)

   

    # Reversing the scale back to the original scale

    yhat = invert_scale(scaler, X, yhat)

   

    # Reversing the differentiation

    yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)

   

    # Storing the prediction

    lstm_predictions.append(yhat)

    expected = raw_values[len(train_scaled) + i ]

   

    print('Month = %d, Predicted Value = %f, True Value = %f' % (i + 1, yhat, expected))

Month = 1, Predicted Value = 865.205508, True Value = 970.554870

Month = 2, Predicted Value = 1443.232505, True Value = 1195.218071

Month = 3, Predicted Value = 377.010758, True Value = 430.501714

Month = 4, Predicted Value = 398.810325, True Value = 1392.859250

Month = 5, Predicted Value = 797.094700, True Value = 825.559133

Month = 6, Predicted Value = 730.959543, True Value = 678.329400

Month = 7, Predicted Value = 991.052913, True Value = 853.055000

Month = 8, Predicted Value = 1266.233301, True Value = 1054.996636

Month = 9, Predicted Value = 843.234142, True Value = 978.842333

Month = 10, Predicted Value = 972.588343, True Value = 1077.704120

Month = 11, Predicted Value = 1660.906639, True Value = 1493.439227

Month = 12, Predicted Value = 1944.268580, True Value = 1996.750920

In [56]:

# Model performance

original_test_data = sales_technology_monthly_mean[-12:]

lstm_model_performance = performance(original_test_data, lstm_predictions)

lstm_model_performance

The prediction MSE is 323356.92

The prediction RMSE is 568.64

The prediction MAPE is 52.63

In [57]:

# Plot

plt.figure(figsize = (18, 6))

 

# Original Series

plt.plot(sales_technology_monthly_mean.index,

         sales_technology_monthly_mean.values,

         label = 'Valores Observados',

         color = 'Blue')

 

# Predictions

plt.plot(sales_technology_monthly_mean[36:].index,

         lstm_predictions,

         label = 'Differentiated LSTM Model Predictions',

         color = 'Red')

 

plt.title('Differentiated LSTM Model Predictions')

plt.xlabel('Data')

plt.ylabel('Sales')

plt.legend()

plt.show()

Judging by the plot the prediction doesn't seem too bad, yet the metrics were rather awful.

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Stacked LSTM:

Differentiated LSTM:

Part 4: https://colab.research.google.com/drive/10-vxlLMWIPOkZwl7DVY5O0jl1-v_GBWy

Part 3: https://colab.research.google.com/drive/1s_zYkNY7x3TJw2ApRFGU-C1DfwuhNaZD

This model will use a Bidirectional LSTM Neural Network combined with Grid Search Hyperparameter Optimization.

Loading Packages

In [1]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.

import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import math

import numpy as np

import pandas as pd

import itertools

from pandas import Series

from pandas.tseries.offsets import DateOffset

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

 

# Predictive modeling imports

import sklearn

import keras

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import MinMaxScaler

from keras.preprocessing.sequence import TimeseriesGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Activation

from keras.layers import LSTM, Bidirectional

from keras.layers import Dropout

from keras import optimizers

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

 

# Graphics formatting imports

m.rcParams['axes.labelsize'] = 14

m.rcParams['xtick.labelsize'] = 12

m.rcParams['ytick.labelsize'] = 12

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 15,7

matplotlib.style.use('ggplot')

%matplotlib inline

Using TensorFlow backend.

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/tableau_superstore_sales.csv')

In [3]:

# Shape

data.shape

Out[3]:

(9994, 21)

In [4]:

# Columns

data.columns

Out[4]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [5]:

# Visualizing data

data.head()

Out[5]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

State

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

California

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

In [6]:

# Statistic summaries

data.describe()

Out[6]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [7]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [0]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [0]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [10]:

# Checking

data.columns

Out[10]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [11]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'First Class', 'Standard Class', 'Second Class', 'Same Day'}

segment {'Corporate', 'Consumer', 'Home Office'}

country {'United States'}

region {'Central', 'South', 'West', 'East'}

category {'Furniture', 'Technology', 'Office Supplies'}

sub_category {'Furnishings', 'Phones', 'Tables', 'Accessories', 'Bookcases', 'Binders', 'Envelopes', 'Art', 'Labels', 'Paper', 'Storage', 'Fasteners', 'Copiers', 'Appliances', 'Supplies', 'Machines', 'Chairs'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [0]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

In [0]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [14]:

# Checking dataset

ts_technology

Out[14]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [0]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [16]:

# Visualizing the series

ts_technology

Out[16]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

In [17]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [18]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [19]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

Adjusting the index type to DateTimeIndex (which characterizes a time series), so that it's possible to aggregate monthly and obtain the mean monthly sales.

In [20]:

# Checking index type

type(sales_technology.index)

Out[20]:

pandas.core.indexes.base.Index

In [0]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [22]:

# Checking index type

type(sales_technology.index)

Out[22]:

pandas.core.indexes.datetimes.DatetimeIndex

In [0]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [24]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[24]:

pandas.core.series.Series

In [25]:

# Checking the data

sales_technology_monthly_mean

Out[25]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [26]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [27]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [28]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

Decomposing the series to analyze its componentes.

In [29]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [0]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [31]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Function to Calculate Accuracy

In [0]:

# Function

def performance(y_true, y_pred):

    mse = ((y_pred - y_true) ** 2).mean()

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    return( print('The prediction MSE is {}'.format(round(mse, 2))+

                  '\nThe prediction RMSE is {}'.format(round(np.sqrt(mse), 2))+

                  '\nThe prediction MAPE is {}'.format(round(mape, 2))))

Train-Test Split

In [0]:

# Original series

X = sales_technology_monthly_mean

In [34]:

# Using the first 3 years (first 36 rows) for training

X[:-12]

Out[34]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

Freq: MS, Name: sales, dtype: float64

In [35]:

# Using the last year (last 12 rows) for testing

X[-12:]

Out[35]:

order_date

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Train-test split

training, testing = np.array(X[:-12]), np.array(X[-12:])

In [0]:

# Ajusta o shape, pois agora não temos um objeto pd.Series,

# mas sim um array NumPy, que é necessário para treinar o modelo LSTM

trainset = training.reshape(-1,1)

testset = testing.reshape(-1,1)

In [38]:

len(trainset)

Out[38]:

36

In [39]:

training

Out[39]:

array([ 449.04142857,  229.78714286, 2031.948375  ,  613.02893333,

        564.69858824,  766.90590909,  533.60893333,  708.43538462,

       2035.83813333,  596.9009    , 1208.05632   , 1160.73288889,

        925.0708    ,  431.12125   ,  574.66233333,  697.5595    ,

        831.64285714,  429.0244    ,  691.39773333, 1108.90228571,

        950.8564    ,  594.71611111, 1037.98265217, 1619.63763636,

        374.67106667, 1225.8914    , 1135.15010526,  875.91188235,

       1601.81616667, 1023.2595    ,  829.3125    ,  483.6201    ,

       1144.1703    , 1970.835875  , 1085.64236   ,  970.55486957])

In [40]:

trainset

Out[40]:

array([[ 449.04142857],

       [ 229.78714286],

       [2031.948375  ],

       [ 613.02893333],

       [ 564.69858824],

       [ 766.90590909],

       [ 533.60893333],

       [ 708.43538462],

       [2035.83813333],

       [ 596.9009    ],

       [1208.05632   ],

       [1160.73288889],

       [ 925.0708    ],

       [ 431.12125   ],

       [ 574.66233333],

       [ 697.5595    ],

       [ 831.64285714],

       [ 429.0244    ],

       [ 691.39773333],

       [1108.90228571],

       [ 950.8564    ],

       [ 594.71611111],

       [1037.98265217],

       [1619.63763636],

       [ 374.67106667],

       [1225.8914    ],

       [1135.15010526],

       [ 875.91188235],

       [1601.81616667],

       [1023.2595    ],

       [ 829.3125    ],

       [ 483.6201    ],

       [1144.1703    ],

       [1970.835875  ],

       [1085.64236   ],

       [ 970.55486957]])

In [41]:

len(testset)

Out[41]:

12

In [42]:

testset

Out[42]:

array([[1195.21807143],

       [ 430.50171429],

       [1392.85925   ],

       [ 825.55913333],

       [ 678.3294    ],

       [ 853.055     ],

       [1054.99663636],

       [ 978.84233333],

       [1077.70412   ],

       [1493.43922727],

       [1996.75092   ],

       [ 955.86565217]])

Bidirectional LSTM Model

Bidirectional LSTM Neural Networks essentially merge two RNN. One RNN is fed the regular time series as input, while the other RNN is fed a inversed time sequence as input.

In [0]:

# Create a scaler

scaler = MinMaxScaler()

In [44]:

# Train the scaler with the training dataset

scaler.fit(trainset)

Out[44]:

MinMaxScaler(copy=True, feature_range=(0, 1))

In [0]:

# Apply the trained scaler to the train dataset

# (No need to apply the scaler to the test dataset as the prediction will be converted back to normal scale)

trainset = scaler.transform(trainset)

In [46]:

trainset.shape

Out[46]:

(36, 1)

In [47]:

trainset

Out[47]:

array([[0.12139983],

       [0.        ],

       [0.99784626],

       [0.21219877],

       [0.18543853],

       [0.29739956],

       [0.16822437],

       [0.26502477],

       [1.        ],

       [0.20326877],

       [0.54166199],

       [0.51545928],

       [0.38497454],

       [0.11147753],

       [0.1909554 ],

       [0.25900285],

       [0.33324403],

       [0.11031652],

       [0.25559112],

       [0.48676098],

       [0.39925188],

       [0.20205906],

       [0.44749318],

       [0.76955219],

       [0.08022139],

       [0.55153717],

       [0.50129424],

       [0.35775554],

       [0.75968454],

       [0.43934106],

       [0.33195373],

       [0.14054584],

       [0.50628867],

       [0.96400863],

       [0.47388209],

       [0.41015881]])

In [0]:

# Transform the time series in a dataset for supervised learning with input and output

# This is done by taking a timestep (eg: January sales) and defining it as X,

# Then taking the next timestep (Febraury sales) and defining it as Y.

 

def transform_series(dados, num_input = 1, num_output = 1):

   

    # Convert to dataframe

    df = pd.DataFrame(dados)

   

    # Columns list

    cols = list()

   

    # Loop to define input data

    for i in range(num_input, 0, -1):

        cols.append(df.shift(i))

       

    # Loop to define output data

    for i in range(0, num_output):

        cols.append(df.shift(-i))

   

    # Concatenate input and output in a single dataframe

    dataset_final = pd.concat(cols, axis = 1)

   

    # Remove NA values

    dataset_final.dropna(inplace = True)

   

    return dataset_final.values

In [0]:

# Function to differentiate the series

def difference(data, order):

    return [data[i] - data[i - order] for i in range(order, len(data))]

In [0]:

# Function to split data into training and testing sets

def split_train_valid(data, num):

    return data[:-num], data[-num:]

In [0]:

# Function to traing the model with different hyperparameter combinations

def train_model(train, config):

   

    # Hyperparameters to be used

    n_input, n_nodes, n_epochs, n_batch, n_diff = config

   

    # Differentiating the time series

    if n_diff > 0:

        train = difference(train, n_diff)

   

    # Converting the time series to a supervised learning dataset

    data = transform_series(train, num_input = n_input)

   

    # Split X and Y

    train_x, train_y = data[:, :-1], data[:, -1]

   

    # Reshape data to [samples, timesteps, features]

    n_features = 1

    train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

   

    # Define model

    model = Sequential()

    model.add(Bidirectional(LSTM(n_nodes, activation = 'relu', input_shape = (n_input, n_features))))

    model.add(Dense(1))

    model.compile(optimizer = 'adam', loss = 'mse')

   

    # Training

    model.fit(train_x, train_y, epochs = n_epochs, batch_size = n_batch, verbose = 0)

   

    return model

In [0]:

# Function to make predictions with the trained model

def predict_series(model, history, config):

   

    # Extract only the hyperparameters of interest

    n_input, _, _, _, n_diff = config

   

    # Prepare data (differentiation)

    correction = 0.0

   

    if n_diff > 0:

        correction = history[-n_diff]

        history = difference(history, n_diff)

   

    # Reshape data to [samples, timesteps, features]

    x_input = np.array(history[-n_input:]).reshape((1, n_input, 1))

   

    # Prediction

    yhat = model.predict(x_input, verbose = 0)

   

    return correction + yhat[0]

Time series models can the evaluated using the Walk-forward method. Walk-forward is an approach where the model makes a predictions for each datapoint in the test dataset, one at a time. After each prediction if made for a given step in the test dataset, the true value for that timestamp is added to the training dataset to be used in predicting the next timestep.

Simpler models could be retrained after each subsequent prediction. More complex model, such as neural networks, aren't too suited for this approach given the much greater computational cost. Hence it will not be employed here.

Nevertheless, the true observation for a timestep can be added to the dataset to be used in predicting the following timestep value. .

In [0]:

# Walk-forward validation (for univariate data)

def walk_forward_validation(data, n_test, cfg):

   

    # List with predictions

    predictions = list()

   

    # Split dataset

    train, valid = split_train_valid(data, n_test)

   

    # Train model

    model = train_model(train, cfg)

   

    # Save history

    history = [x for x in train]

   

    # One step forward with the validation data

    for i in range(len(valid)):

       

        # Predict

        yhat = predict_series(model, history, cfg)

       

        # Save prediction

        predictions.append(yhat)

       

        # Save history

        history.append(valid[i])

   

    # Calculate prediction MSE

    erro =  math.sqrt(mean_squared_error(valid, predictions))

    print('\n')

    print('Estimated model MSE = %.3f' % erro)

    return erro

In [0]:

# Evaluate model

def evaluate_model(data, config, n_test, n_repeats = 10):

   

    # Make list with hyperparameters

    key = str(config)

   

    # Train and evaluate model

    scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

   

    # Score

    result = np.mean(scores)

    print('\n')

    print('Model with hyperparameters [%s] has an MSE of %.3f' % (key, result))

    return (key, result)

In [0]:

# Grid Search function

def grid_search(data, cfg_list, n_test):

   

    # Scores

    scores = [evaluate_model(data, cfg, n_test) for cfg in cfg_list]

   

    # Order hyperparameters by error

    scores.sort(key = lambda tup: tup[1])

    return scores

In [0]:

# List of hyperparameters to be tested

def list_hyperparameters():

    n_input = [12]

    n_nodes = [50, 100]

    n_epochs = [50, 100, 200]

    n_batch = [5, 10]

    n_diff = [12]

    configs = list()

    for i in n_input:

        for j in n_nodes:

            for k in n_epochs:

                for l in n_batch:

                    for m in n_diff:

                        cfg = [i, j, k, l, m]

                        configs.append(cfg)

                       

    print('\nTotal hyperparameter combinations: %d' % len(configs))

    return configs

In [0]:

# Define the dataset (using data already normalized)

dataset = trainset

In [0]:

# Split

n_test = 1

In [59]:

# Hyperparameter list

cfg_list = list_hyperparameters()

Total hyperparameter combinations: 12

In [60]:

# Grid Search

scores = grid_search(dataset, cfg_list, n_test)

print('Finished.')

 

Estimated model MSE = 0.600

 

 

Estimated model MSE = 0.545

 

 

Estimated model MSE = 0.652

 

 

Estimated model MSE = 0.499

 

 

Estimated model MSE = 0.544

 

 

Estimated model MSE = 0.571

 

 

Estimated model MSE = 0.566

 

 

Estimated model MSE = 0.475

 

 

Estimated model MSE = 0.510

 

 

Estimated model MSE = 0.539

 

 

Model with hyperparameters [[12, 50, 50, 5, 12]] has an MSE of 0.550

 

 

Estimated model MSE = 0.530

 

 

Estimated model MSE = 0.542

 

 

Estimated model MSE = 0.550

 

 

Estimated model MSE = 0.489

 

 

Estimated model MSE = 0.581

 

 

Estimated model MSE = 0.527

 

 

Estimated model MSE = 0.496

 

 

Estimated model MSE = 0.564

 

 

Estimated model MSE = 0.471

 

 

Estimated model MSE = 0.417

 

 

Model with hyperparameters [[12, 50, 50, 10, 12]] has an MSE of 0.517

 

 

Estimated model MSE = 0.488

 

 

Estimated model MSE = 0.527

 

 

Estimated model MSE = 0.542

 

 

Estimated model MSE = 0.566

 

 

Estimated model MSE = 0.508

 

 

Estimated model MSE = 0.489

 

 

Estimated model MSE = 0.548

 

 

Estimated model MSE = 0.584

 

 

Estimated model MSE = 0.529

 

 

Estimated model MSE = 0.575

 

 

Model with hyperparameters [[12, 50, 100, 5, 12]] has an MSE of 0.536

 

 

Estimated model MSE = 0.461

 

 

Estimated model MSE = 0.475

 

 

Estimated model MSE = 0.487

 

 

Estimated model MSE = 0.510

 

 

Estimated model MSE = 0.488

 

 

Estimated model MSE = 0.454

 

 

Estimated model MSE = 0.539

 

 

Estimated model MSE = 0.595

 

 

Estimated model MSE = 0.476

 

 

Estimated model MSE = 0.510

 

 

Model with hyperparameters [[12, 50, 100, 10, 12]] has an MSE of 0.499

 

 

Estimated model MSE = 0.639

 

 

Estimated model MSE = 0.709

 

 

Estimated model MSE = 0.721

 

 

Estimated model MSE = 0.481

 

 

Estimated model MSE = 0.755

 

 

Estimated model MSE = 0.504

 

 

Estimated model MSE = 0.570

 

 

Estimated model MSE = 0.587

 

 

Estimated model MSE = 0.691

 

 

Estimated model MSE = 0.590

 

 

Model with hyperparameters [[12, 50, 200, 5, 12]] has an MSE of 0.625

 

 

Estimated model MSE = 0.490

 

 

Estimated model MSE = 0.575

 

 

Estimated model MSE = 0.521

 

 

Estimated model MSE = 0.592

 

 

Estimated model MSE = 0.610

 

 

Estimated model MSE = 0.517

 

 

Estimated model MSE = 0.595

 

 

Estimated model MSE = 0.592

 

 

Estimated model MSE = 0.617

 

 

Estimated model MSE = 0.595

 

 

Model with hyperparameters [[12, 50, 200, 10, 12]] has an MSE of 0.570

 

 

Estimated model MSE = 0.581

 

 

Estimated model MSE = 0.509

 

 

Estimated model MSE = 0.498

 

 

Estimated model MSE = 0.570

 

 

Estimated model MSE = 0.461

 

 

Estimated model MSE = 0.525

 

 

Estimated model MSE = 0.551

 

 

Estimated model MSE = 0.517

 

 

Estimated model MSE = 0.628

 

 

Estimated model MSE = 0.499

 

 

Model with hyperparameters [[12, 100, 50, 5, 12]] has an MSE of 0.534

 

 

Estimated model MSE = 0.528

 

 

Estimated model MSE = 0.495

 

 

Estimated model MSE = 0.485

 

 

Estimated model MSE = 0.490

 

 

Estimated model MSE = 0.525

 

 

Estimated model MSE = 0.510

 

 

Estimated model MSE = 0.583

 

 

Estimated model MSE = 0.531

 

 

Estimated model MSE = 0.598

 

 

Estimated model MSE = 0.620

 

 

Model with hyperparameters [[12, 100, 50, 10, 12]] has an MSE of 0.537

 

 

Estimated model MSE = 0.525

 

 

Estimated model MSE = 0.554

 

 

Estimated model MSE = 0.677

 

 

Estimated model MSE = 0.576

 

 

Estimated model MSE = 0.605

 

 

Estimated model MSE = 0.532

 

 

Estimated model MSE = 0.621

 

 

Estimated model MSE = 0.718

 

 

Estimated model MSE = 0.619

 

 

Estimated model MSE = 0.496

 

 

Model with hyperparameters [[12, 100, 100, 5, 12]] has an MSE of 0.592

 

 

Estimated model MSE = 0.519

 

 

Estimated model MSE = 0.499

 

 

Estimated model MSE = 0.534

 

 

Estimated model MSE = 0.615

 

 

Estimated model MSE = 0.513

 

 

Estimated model MSE = 0.603

 

 

Estimated model MSE = 0.624

 

 

Estimated model MSE = 0.511

 

 

Estimated model MSE = 0.515

 

 

Estimated model MSE = 0.553

 

 

Model with hyperparameters [[12, 100, 100, 10, 12]] has an MSE of 0.549

 

 

Estimated model MSE = 0.434

 

 

Estimated model MSE = 0.709

 

 

Estimated model MSE = 0.486

 

 

Estimated model MSE = 0.513

 

 

Estimated model MSE = 0.562

 

 

Estimated model MSE = 0.533

 

 

Estimated model MSE = 0.661

 

 

Estimated model MSE = 0.478

 

 

Estimated model MSE = 0.566

 

 

Estimated model MSE = 0.542

 

 

Model with hyperparameters [[12, 100, 200, 5, 12]] has an MSE of 0.548

 

 

Estimated model MSE = 0.778

 

 

Estimated model MSE = 0.435

 

 

Estimated model MSE = 0.537

 

 

Estimated model MSE = 0.613

 

 

Estimated model MSE = 0.868

 

 

Estimated model MSE = 0.539

 

 

Estimated model MSE = 0.810

 

 

Estimated model MSE = 0.571

 

 

Estimated model MSE = 0.641

 

 

Estimated model MSE = 0.749

 

 

Model with hyperparameters [[12, 100, 200, 10, 12]] has an MSE of 0.654

Finished.

In [61]:

# Listing hyperparameters with the lowest MSEs

print('\nHyperparameters with the lowest MSEs:')

for cfg, error in scores[:3]:

    print(cfg, error)

Hyperparameters with the lowest MSEs:

[12, 50, 100, 10, 12] 0.4994853063664534

[12, 50, 50, 10, 12] 0.5165652021012404

[12, 100, 50, 5, 12] 0.5338467753670313

In [0]:

# Creating the final version of the model using the best hyperparameter combination

# List of hyperparameters with best performance: n_input, n_nodes, n_epochs, n_batch, n_diff

config = [12, 100, 200, 5, 12]

In [0]:

# Number of repetitions

n_rep = 20

 

# Number of epochs

num_epochs = 200

 

# Number of inputs (using 12 series to predict the next 12 series)

n_input = 12

 

# Length of the output sequency (in number of timesteps)

n_output = 12

 

# This series is univariate, therefore only 1 feature

n_features = 1

 

# Number of time series samples in each batch

size_batch = 5

In [0]:

# Generator

generator = TimeseriesGenerator(trainset,

                                trainset,

                                length = n_output,

                                batch_size = size_batch)

In [65]:

# Creating and training the Bidirectional LSTM model

 

# Creating a zeroed matrix to receive the output from the model's predictions

result = np.zeros((n_input, n_rep))

 

# Loop

# Repeating the training process N times and storing the results, this way different samples can be used and then averaged for a final prediction

for i in range(n_rep):

   

    # Starting the model (Keras Sequential())

    bidirectional_lstm = Sequential()

   

    # Bidirectional model

    bidirectional_lstm.add(Bidirectional(LSTM(100, activation = 'relu'), input_shape = (12, 1)))

    bidirectional_lstm.add(Dense(1))

   

    # Defining the loss function as MSE

    # Defininf the optimization algorithm as ADAM

    bidirectional_lstm.compile(optimizer = 'adam', loss = 'mean_squared_error')

   

    # Training with the generated data batches

    bidirectional_lstm.fit_generator(generator, epochs = num_epochs)

   

    # Predictions list

    pred_list = []

 

    # Make a batch of data

    batch = trainset[-n_input:].reshape((1, n_input, n_features))

 

    # Loop to make predictions

    for j in range(n_input):  

        pred_list.append(bidirectional_lstm.predict(batch)[0])

        batch = np.append(batch[:,1:,:], [[pred_list[j]]], axis = 1)

 

    # Create a dataframe with the predictions

    df_predict_bidirectional_lstm = pd.DataFrame(scaler.inverse_transform(pred_list),

                                      index = X[-n_input:].index, columns = ['Prediction'])

 

    result[:,i] = df_predict_bidirectional_lstm['Prediction']

   

print(result)

Streaming output truncated to the last 5000 lines.

5/5 [==============================] - 0s 70ms/step - loss: 0.0479

Epoch 32/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0481

Epoch 33/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0489

Epoch 34/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0484

Epoch 35/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0485

Epoch 36/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0481

Epoch 37/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0478

Epoch 38/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0478

Epoch 39/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0481

Epoch 40/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0478

Epoch 41/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0481

Epoch 42/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0479

Epoch 43/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0474

Epoch 44/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0477

Epoch 45/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0481

Epoch 46/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0479

Epoch 47/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0479

Epoch 48/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0473

Epoch 49/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0476

Epoch 50/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0473

Epoch 51/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0471

Epoch 52/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0472

Epoch 53/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0475

Epoch 54/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0470

Epoch 55/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0469

Epoch 56/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0482

Epoch 57/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0468

Epoch 58/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0463

Epoch 59/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0466

Epoch 60/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0466

Epoch 61/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0480

Epoch 62/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0473

Epoch 63/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0467

Epoch 64/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0465

Epoch 65/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0468

Epoch 66/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0461

Epoch 67/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0464

Epoch 68/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0456

Epoch 69/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0467

Epoch 70/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0465

Epoch 71/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0466

Epoch 72/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0454

Epoch 73/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0457

Epoch 74/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0458

Epoch 75/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0475

Epoch 76/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0456

Epoch 77/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0447

Epoch 78/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0449

Epoch 79/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0448

Epoch 80/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0454

Epoch 81/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0465

Epoch 82/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0457

Epoch 83/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0437

Epoch 84/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0440

Epoch 85/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0445

Epoch 86/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0431

Epoch 87/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0466

Epoch 88/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0427

Epoch 89/500

5/5 [==============================] - 0s 83ms/step - loss: 0.0421

Epoch 90/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0435

Epoch 91/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0425

Epoch 92/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0427

Epoch 93/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0418

Epoch 94/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0411

Epoch 95/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0413

Epoch 96/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0407

Epoch 97/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0411

Epoch 98/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0401

Epoch 99/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0437

Epoch 100/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0398

Epoch 101/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0402

Epoch 102/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0396

Epoch 103/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0392

Epoch 104/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0387

Epoch 105/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0395

Epoch 106/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0387

Epoch 107/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0395

Epoch 108/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0391

Epoch 109/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0370

Epoch 110/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0384

Epoch 111/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0371

Epoch 112/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0365

Epoch 113/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0371

Epoch 114/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0370

Epoch 115/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0369

Epoch 116/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0355

Epoch 117/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0383

Epoch 118/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0405

Epoch 119/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0439

Epoch 120/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0418

Epoch 121/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0386

Epoch 122/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0362

Epoch 123/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0354

Epoch 124/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0375

Epoch 125/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0378

Epoch 126/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0372

Epoch 127/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0345

Epoch 128/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0356

Epoch 129/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0376

Epoch 130/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0328

Epoch 131/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0341

Epoch 132/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0329

Epoch 133/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0323

Epoch 134/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0345

Epoch 135/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0335

Epoch 136/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0338

Epoch 137/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0311

Epoch 138/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0315

Epoch 139/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0303

Epoch 140/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0315

Epoch 141/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0300

Epoch 142/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0298

Epoch 143/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0312

Epoch 144/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0305

Epoch 145/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0293

Epoch 146/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0295

Epoch 147/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0282

Epoch 148/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0314

Epoch 149/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0294

Epoch 150/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0268

Epoch 151/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0258

Epoch 152/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0245

Epoch 153/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0279

Epoch 154/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0253

Epoch 155/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0239

Epoch 156/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0237

Epoch 157/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0216

Epoch 158/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0192

Epoch 159/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0227

Epoch 160/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0187

Epoch 161/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0177

Epoch 162/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0180

Epoch 163/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0158

Epoch 164/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0188

Epoch 165/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0181

Epoch 166/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0156

Epoch 167/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0256

Epoch 168/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0409

Epoch 169/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0433

Epoch 170/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0379

Epoch 171/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0342

Epoch 172/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0252

Epoch 173/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0309

Epoch 174/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0248

Epoch 175/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0268

Epoch 176/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0212

Epoch 177/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0206

Epoch 178/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0202

Epoch 179/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0217

Epoch 180/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0237

Epoch 181/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0202

Epoch 182/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0236

Epoch 183/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0231

Epoch 184/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0312

Epoch 185/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0353

Epoch 186/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0247

Epoch 187/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0278

Epoch 188/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0304

Epoch 189/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0235

Epoch 190/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0222

Epoch 191/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0220

Epoch 192/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0214

Epoch 193/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0186

Epoch 194/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0180

Epoch 195/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0166

Epoch 196/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0153

Epoch 197/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0140

Epoch 198/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0145

Epoch 199/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0137

Epoch 200/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0133

Epoch 201/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0128

Epoch 202/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0124

Epoch 203/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0126

Epoch 204/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0123

Epoch 205/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0111

Epoch 206/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0106

Epoch 207/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0101

Epoch 208/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0092

Epoch 209/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0092

Epoch 210/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0089

Epoch 211/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0083

Epoch 212/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0085

Epoch 213/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0075

Epoch 214/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0080

Epoch 215/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0098

Epoch 216/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0106

Epoch 217/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0140

Epoch 218/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0117

Epoch 219/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0163

Epoch 220/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0198

Epoch 221/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0269

Epoch 222/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0191

Epoch 223/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0183

Epoch 224/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0138

Epoch 225/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0117

Epoch 226/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0110

Epoch 227/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0100

Epoch 228/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0080

Epoch 229/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0104

Epoch 230/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0088

Epoch 231/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0093

Epoch 232/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0106

Epoch 233/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0108

Epoch 234/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0081

Epoch 235/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0064

Epoch 236/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0056

Epoch 237/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0047

Epoch 238/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0046

Epoch 239/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0057

Epoch 240/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0045

Epoch 241/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0061

Epoch 242/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0074

Epoch 243/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0122

Epoch 244/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0056

Epoch 245/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0069

Epoch 246/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0055

Epoch 247/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0057

Epoch 248/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0042

Epoch 249/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0042

Epoch 250/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0030

Epoch 251/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0032

Epoch 252/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0025

Epoch 253/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0027

Epoch 254/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0034

Epoch 255/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0021

Epoch 256/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0023

Epoch 257/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0033

Epoch 258/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0056

Epoch 259/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0090

Epoch 260/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0060

Epoch 261/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0046

Epoch 262/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0052

Epoch 263/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0047

Epoch 264/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0049

Epoch 265/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0047

Epoch 266/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0082

Epoch 267/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0097

Epoch 268/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0076

Epoch 269/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0055

Epoch 270/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0042

Epoch 271/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0037

Epoch 272/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0039

Epoch 273/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0022

Epoch 274/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0020

Epoch 275/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0017

Epoch 276/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0015

Epoch 277/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0016

Epoch 278/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0022

Epoch 279/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0016

Epoch 280/500

5/5 [==============================] - 0s 83ms/step - loss: 0.0018

Epoch 281/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0015

Epoch 282/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0025

Epoch 283/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0017

Epoch 284/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0024

Epoch 285/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0021

Epoch 286/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0022

Epoch 287/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0025

Epoch 288/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0051

Epoch 289/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0041

Epoch 290/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0025

Epoch 291/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0016

Epoch 292/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0012

Epoch 293/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0012

Epoch 294/500

5/5 [==============================] - 0s 75ms/step - loss: 9.9144e-04

Epoch 295/500

5/5 [==============================] - 0s 72ms/step - loss: 7.5496e-04

Epoch 296/500

5/5 [==============================] - 0s 76ms/step - loss: 7.9928e-04

Epoch 297/500

5/5 [==============================] - 0s 69ms/step - loss: 6.6555e-04

Epoch 298/500

5/5 [==============================] - 0s 69ms/step - loss: 6.8279e-04

Epoch 299/500

5/5 [==============================] - 0s 71ms/step - loss: 7.1513e-04

Epoch 300/500

5/5 [==============================] - 0s 68ms/step - loss: 8.1938e-04

Epoch 301/500

5/5 [==============================] - 0s 76ms/step - loss: 5.5622e-04

Epoch 302/500

5/5 [==============================] - 0s 71ms/step - loss: 6.5599e-04

Epoch 303/500

5/5 [==============================] - 0s 70ms/step - loss: 5.0211e-04

Epoch 304/500

5/5 [==============================] - 0s 69ms/step - loss: 4.5561e-04

Epoch 305/500

5/5 [==============================] - 0s 75ms/step - loss: 6.6270e-04

Epoch 306/500

5/5 [==============================] - 0s 65ms/step - loss: 7.5929e-04

Epoch 307/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0012

Epoch 308/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0026

Epoch 309/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0035

Epoch 310/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0031

Epoch 311/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0048

Epoch 312/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0071

Epoch 313/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0165

Epoch 314/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0054

Epoch 315/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0050

Epoch 316/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0031

Epoch 317/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0075

Epoch 318/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0102

Epoch 319/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0066

Epoch 320/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0044

Epoch 321/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0026

Epoch 322/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0025

Epoch 323/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0021

Epoch 324/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0028

Epoch 325/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0029

Epoch 326/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0026

Epoch 327/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0012

Epoch 328/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0027

Epoch 329/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0032

Epoch 330/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0019

Epoch 331/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0026

Epoch 332/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0017

Epoch 333/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0015

Epoch 334/500

5/5 [==============================] - 0s 72ms/step - loss: 9.5128e-04

Epoch 335/500

5/5 [==============================] - 0s 72ms/step - loss: 8.1718e-04

Epoch 336/500

5/5 [==============================] - 0s 71ms/step - loss: 6.5518e-04

Epoch 337/500

5/5 [==============================] - 0s 89ms/step - loss: 5.6488e-04

Epoch 338/500

5/5 [==============================] - 0s 74ms/step - loss: 5.1789e-04

Epoch 339/500

5/5 [==============================] - 0s 70ms/step - loss: 6.9575e-04

Epoch 340/500

5/5 [==============================] - 0s 74ms/step - loss: 4.9335e-04

Epoch 341/500

5/5 [==============================] - 0s 69ms/step - loss: 3.6606e-04

Epoch 342/500

5/5 [==============================] - 0s 71ms/step - loss: 3.9477e-04

Epoch 343/500

5/5 [==============================] - 0s 80ms/step - loss: 4.1073e-04

Epoch 344/500

5/5 [==============================] - 0s 73ms/step - loss: 3.6708e-04

Epoch 345/500

5/5 [==============================] - 0s 71ms/step - loss: 5.9553e-04

Epoch 346/500

5/5 [==============================] - 0s 74ms/step - loss: 9.0809e-04

Epoch 347/500

5/5 [==============================] - 0s 73ms/step - loss: 9.7963e-04

Epoch 348/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0013

Epoch 349/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0017

Epoch 350/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0011

Epoch 351/500

5/5 [==============================] - 0s 68ms/step - loss: 8.8599e-04

Epoch 352/500

5/5 [==============================] - 0s 73ms/step - loss: 6.9503e-04

Epoch 353/500

5/5 [==============================] - 0s 71ms/step - loss: 6.6479e-04

Epoch 354/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0011

Epoch 355/500

5/5 [==============================] - 0s 66ms/step - loss: 9.6832e-04

Epoch 356/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0010

Epoch 357/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0013

Epoch 358/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0010

Epoch 359/500

5/5 [==============================] - 0s 70ms/step - loss: 9.5874e-04

Epoch 360/500

5/5 [==============================] - 0s 77ms/step - loss: 7.6725e-04

Epoch 361/500

5/5 [==============================] - 0s 71ms/step - loss: 7.7998e-04

Epoch 362/500

5/5 [==============================] - 0s 74ms/step - loss: 5.6004e-04

Epoch 363/500

5/5 [==============================] - 0s 70ms/step - loss: 4.0834e-04

Epoch 364/500

5/5 [==============================] - 0s 72ms/step - loss: 2.9654e-04

Epoch 365/500

5/5 [==============================] - 0s 74ms/step - loss: 1.8476e-04

Epoch 366/500

5/5 [==============================] - 0s 72ms/step - loss: 1.5722e-04

Epoch 367/500

5/5 [==============================] - 0s 69ms/step - loss: 2.0522e-04

Epoch 368/500

5/5 [==============================] - 0s 71ms/step - loss: 2.2177e-04

Epoch 369/500

5/5 [==============================] - 0s 73ms/step - loss: 2.6469e-04

Epoch 370/500

5/5 [==============================] - 0s 71ms/step - loss: 4.1437e-04

Epoch 371/500

5/5 [==============================] - 0s 69ms/step - loss: 2.8198e-04

Epoch 372/500

5/5 [==============================] - 0s 68ms/step - loss: 2.4884e-04

Epoch 373/500

5/5 [==============================] - 0s 75ms/step - loss: 1.8459e-04

Epoch 374/500

5/5 [==============================] - 0s 71ms/step - loss: 2.4233e-04

Epoch 375/500

5/5 [==============================] - 0s 72ms/step - loss: 3.2232e-04

Epoch 376/500

5/5 [==============================] - 0s 74ms/step - loss: 4.5872e-04

Epoch 377/500

5/5 [==============================] - 0s 72ms/step - loss: 6.3978e-04

Epoch 378/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0010

Epoch 379/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0015

Epoch 380/500

5/5 [==============================] - 0s 75ms/step - loss: 6.5995e-04

Epoch 381/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0015

Epoch 382/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0017

Epoch 383/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0014

Epoch 384/500

5/5 [==============================] - 0s 74ms/step - loss: 9.5619e-04

Epoch 385/500

5/5 [==============================] - 0s 69ms/step - loss: 5.2882e-04

Epoch 386/500

5/5 [==============================] - 0s 69ms/step - loss: 4.4750e-04

Epoch 387/500

5/5 [==============================] - 0s 70ms/step - loss: 2.9749e-04

Epoch 388/500

5/5 [==============================] - 0s 79ms/step - loss: 3.0690e-04

Epoch 389/500

5/5 [==============================] - 0s 69ms/step - loss: 4.0818e-04

Epoch 390/500

5/5 [==============================] - 0s 69ms/step - loss: 5.1956e-04

Epoch 391/500

5/5 [==============================] - 0s 74ms/step - loss: 6.0320e-04

Epoch 392/500

5/5 [==============================] - 0s 71ms/step - loss: 5.0685e-04

Epoch 393/500

5/5 [==============================] - 0s 76ms/step - loss: 4.4078e-04

Epoch 394/500

5/5 [==============================] - 0s 69ms/step - loss: 3.7471e-04

Epoch 395/500

5/5 [==============================] - 0s 71ms/step - loss: 4.5780e-04

Epoch 396/500

5/5 [==============================] - 0s 70ms/step - loss: 3.6152e-04

Epoch 397/500

5/5 [==============================] - 0s 66ms/step - loss: 3.5874e-04

Epoch 398/500

5/5 [==============================] - 0s 78ms/step - loss: 4.6268e-04

Epoch 399/500

5/5 [==============================] - 0s 75ms/step - loss: 6.8581e-04

Epoch 400/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0012

Epoch 401/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0017

Epoch 402/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0038

Epoch 403/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0023

Epoch 404/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0019

Epoch 405/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0044

Epoch 406/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0072

Epoch 407/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0063

Epoch 408/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0031

Epoch 409/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0023

Epoch 410/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0107

Epoch 411/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0090

Epoch 412/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0088

Epoch 413/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0084

Epoch 414/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0064

Epoch 415/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0055

Epoch 416/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0078

Epoch 417/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0090

Epoch 418/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0083

Epoch 419/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0189

Epoch 420/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0181

Epoch 421/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0238

Epoch 422/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0174

Epoch 423/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0169

Epoch 424/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0107

Epoch 425/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0047

Epoch 426/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0045

Epoch 427/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0035

Epoch 428/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0044

Epoch 429/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0038

Epoch 430/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0020

Epoch 431/500

5/5 [==============================] - 0s 71ms/step - loss: 9.8518e-04

Epoch 432/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0016

Epoch 433/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0011

Epoch 434/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 435/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0012

Epoch 436/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0012

Epoch 437/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0012

Epoch 438/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0012

Epoch 439/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0010

Epoch 440/500

5/5 [==============================] - 0s 79ms/step - loss: 8.8435e-04

Epoch 441/500

5/5 [==============================] - 0s 70ms/step - loss: 7.5856e-04

Epoch 442/500

5/5 [==============================] - 0s 73ms/step - loss: 6.0850e-04

Epoch 443/500

5/5 [==============================] - 0s 73ms/step - loss: 3.9508e-04

Epoch 444/500

5/5 [==============================] - 0s 71ms/step - loss: 2.8001e-04

Epoch 445/500

5/5 [==============================] - 0s 69ms/step - loss: 3.3561e-04

Epoch 446/500

5/5 [==============================] - 0s 77ms/step - loss: 2.2420e-04

Epoch 447/500

5/5 [==============================] - 0s 70ms/step - loss: 1.8929e-04

Epoch 448/500

5/5 [==============================] - 0s 75ms/step - loss: 1.8569e-04

Epoch 449/500

5/5 [==============================] - 0s 73ms/step - loss: 1.4801e-04

Epoch 450/500

5/5 [==============================] - 0s 70ms/step - loss: 1.5466e-04

Epoch 451/500

5/5 [==============================] - 0s 68ms/step - loss: 1.3371e-04

Epoch 452/500

5/5 [==============================] - 0s 76ms/step - loss: 1.2026e-04

Epoch 453/500

5/5 [==============================] - 0s 73ms/step - loss: 1.1201e-04

Epoch 454/500

5/5 [==============================] - 0s 72ms/step - loss: 1.2246e-04

Epoch 455/500

5/5 [==============================] - 0s 69ms/step - loss: 1.1169e-04

Epoch 456/500

5/5 [==============================] - 0s 69ms/step - loss: 1.3572e-04

Epoch 457/500

5/5 [==============================] - 0s 75ms/step - loss: 1.2934e-04

Epoch 458/500

5/5 [==============================] - 0s 68ms/step - loss: 1.4059e-04

Epoch 459/500

5/5 [==============================] - 0s 69ms/step - loss: 2.2072e-04

Epoch 460/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9362e-04

Epoch 461/500

5/5 [==============================] - 0s 68ms/step - loss: 3.2308e-04

Epoch 462/500

5/5 [==============================] - 0s 74ms/step - loss: 3.3949e-04

Epoch 463/500

5/5 [==============================] - 0s 84ms/step - loss: 2.7512e-04

Epoch 464/500

5/5 [==============================] - 0s 73ms/step - loss: 3.4622e-04

Epoch 465/500

5/5 [==============================] - 0s 70ms/step - loss: 3.4738e-04

Epoch 466/500

5/5 [==============================] - 0s 70ms/step - loss: 4.6647e-04

Epoch 467/500

5/5 [==============================] - 0s 72ms/step - loss: 3.8697e-04

Epoch 468/500

5/5 [==============================] - 0s 76ms/step - loss: 2.8572e-04

Epoch 469/500

5/5 [==============================] - 0s 75ms/step - loss: 2.2263e-04

Epoch 470/500

5/5 [==============================] - 0s 70ms/step - loss: 9.1099e-05

Epoch 471/500

5/5 [==============================] - 0s 80ms/step - loss: 1.2939e-04

Epoch 472/500

5/5 [==============================] - 0s 78ms/step - loss: 9.1079e-05

Epoch 473/500

5/5 [==============================] - 0s 72ms/step - loss: 1.0718e-04

Epoch 474/500

5/5 [==============================] - 0s 72ms/step - loss: 7.7158e-05

Epoch 475/500

5/5 [==============================] - 0s 80ms/step - loss: 5.0360e-05

Epoch 476/500

5/5 [==============================] - 0s 76ms/step - loss: 5.0983e-05

Epoch 477/500

5/5 [==============================] - 0s 71ms/step - loss: 4.8445e-05

Epoch 478/500

5/5 [==============================] - 0s 71ms/step - loss: 4.2461e-05

Epoch 479/500

5/5 [==============================] - 0s 77ms/step - loss: 4.7179e-05

Epoch 480/500

5/5 [==============================] - 0s 65ms/step - loss: 7.3849e-05

Epoch 481/500

5/5 [==============================] - 0s 69ms/step - loss: 1.3774e-04

Epoch 482/500

5/5 [==============================] - 0s 75ms/step - loss: 2.1677e-04

Epoch 483/500

5/5 [==============================] - 0s 68ms/step - loss: 3.1755e-04

Epoch 484/500

5/5 [==============================] - 0s 73ms/step - loss: 2.3774e-04

Epoch 485/500

5/5 [==============================] - 0s 73ms/step - loss: 5.2398e-04

Epoch 486/500

5/5 [==============================] - 0s 66ms/step - loss: 4.8582e-04

Epoch 487/500

5/5 [==============================] - 0s 64ms/step - loss: 6.3026e-04

Epoch 488/500

5/5 [==============================] - 0s 70ms/step - loss: 5.7440e-04

Epoch 489/500

5/5 [==============================] - 0s 69ms/step - loss: 3.8410e-04

Epoch 490/500

5/5 [==============================] - 0s 69ms/step - loss: 4.7589e-04

Epoch 491/500

5/5 [==============================] - 0s 69ms/step - loss: 3.3985e-04

Epoch 492/500

5/5 [==============================] - 0s 65ms/step - loss: 4.7296e-04

Epoch 493/500

5/5 [==============================] - 0s 76ms/step - loss: 3.7222e-04

Epoch 494/500

5/5 [==============================] - 0s 74ms/step - loss: 4.4234e-04

Epoch 495/500

5/5 [==============================] - 0s 71ms/step - loss: 4.3349e-04

Epoch 496/500

5/5 [==============================] - 0s 78ms/step - loss: 4.3140e-04

Epoch 497/500

5/5 [==============================] - 0s 72ms/step - loss: 7.6934e-04

Epoch 498/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0023

Epoch 499/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0024

Epoch 500/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0047

Epoch 1/500

5/5 [==============================] - 1s 208ms/step - loss: 0.1955

Epoch 2/500

5/5 [==============================] - 0s 82ms/step - loss: 0.1300

Epoch 3/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0801

Epoch 4/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0591

Epoch 5/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0591

Epoch 6/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0550

Epoch 7/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0488

Epoch 8/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0501

Epoch 9/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0498

Epoch 10/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0486

Epoch 11/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0490

Epoch 12/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0497

Epoch 13/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0488

Epoch 14/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0482

Epoch 15/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0483

Epoch 16/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0487

Epoch 17/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0490

Epoch 18/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0488

Epoch 19/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0497

Epoch 20/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0485

Epoch 21/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0486

Epoch 22/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0482

Epoch 23/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0481

Epoch 24/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0489

Epoch 25/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0486

Epoch 26/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0480

Epoch 27/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0481

Epoch 28/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0481

Epoch 29/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0483

Epoch 30/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0483

Epoch 31/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0477

Epoch 32/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0489

Epoch 33/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0482

Epoch 34/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0481

Epoch 35/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0482

Epoch 36/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0484

Epoch 37/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0491

Epoch 38/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0480

Epoch 39/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0480

Epoch 40/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0481

Epoch 41/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0477

Epoch 42/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0477

Epoch 43/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0477

Epoch 44/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0479

Epoch 45/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0485

Epoch 46/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0482

Epoch 47/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0478

Epoch 48/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0474

Epoch 49/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0480

Epoch 50/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0477

Epoch 51/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0473

Epoch 52/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0472

Epoch 53/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0473

Epoch 54/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0480

Epoch 55/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0474

Epoch 56/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0484

Epoch 57/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0474

Epoch 58/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0477

Epoch 59/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0473

Epoch 60/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0470

Epoch 61/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0479

Epoch 62/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0473

Epoch 63/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0471

Epoch 64/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0475

Epoch 65/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0471

Epoch 66/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0470

Epoch 67/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0469

Epoch 68/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0468

Epoch 69/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0467

Epoch 70/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0467

Epoch 71/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0465

Epoch 72/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0467

Epoch 73/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0465

Epoch 74/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0464

Epoch 75/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0470

Epoch 76/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0460

Epoch 77/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0460

Epoch 78/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0461

Epoch 79/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0469

Epoch 80/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0454

Epoch 81/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0456

Epoch 82/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0461

Epoch 83/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0454

Epoch 84/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0470

Epoch 85/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0465

Epoch 86/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0460

Epoch 87/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0457

Epoch 88/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0452

Epoch 89/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0454

Epoch 90/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0451

Epoch 91/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0456

Epoch 92/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0450

Epoch 93/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0443

Epoch 94/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0447

Epoch 95/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0442

Epoch 96/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0446

Epoch 97/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0443

Epoch 98/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0440

Epoch 99/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0429

Epoch 100/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0447

Epoch 101/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0439

Epoch 102/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0435

Epoch 103/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0455

Epoch 104/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0426

Epoch 105/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0432

Epoch 106/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0440

Epoch 107/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0453

Epoch 108/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0435

Epoch 109/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0423

Epoch 110/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0427

Epoch 111/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0430

Epoch 112/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0414

Epoch 113/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0430

Epoch 114/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0440

Epoch 115/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0427

Epoch 116/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0429

Epoch 117/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0417

Epoch 118/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0419

Epoch 119/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0414

Epoch 120/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0443

Epoch 121/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0423

Epoch 122/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0417

Epoch 123/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0403

Epoch 124/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0405

Epoch 125/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0404

Epoch 126/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0404

Epoch 127/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0405

Epoch 128/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0396

Epoch 129/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0433

Epoch 130/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0397

Epoch 131/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0429

Epoch 132/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0412

Epoch 133/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0423

Epoch 134/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0398

Epoch 135/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0382

Epoch 136/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0376

Epoch 137/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0384

Epoch 138/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0375

Epoch 139/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0373

Epoch 140/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0386

Epoch 141/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0384

Epoch 142/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0369

Epoch 143/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0373

Epoch 144/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0375

Epoch 145/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0430

Epoch 146/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0363

Epoch 147/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0395

Epoch 148/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0379

Epoch 149/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0388

Epoch 150/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0362

Epoch 151/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0384

Epoch 152/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0383

Epoch 153/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0359

Epoch 154/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0427

Epoch 155/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0356

Epoch 156/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0389

Epoch 157/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0351

Epoch 158/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0358

Epoch 159/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0359

Epoch 160/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0345

Epoch 161/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0348

Epoch 162/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0350

Epoch 163/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0339

Epoch 164/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0337

Epoch 165/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0337

Epoch 166/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0319

Epoch 167/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0313

Epoch 168/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0312

Epoch 169/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0343

Epoch 170/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0303

Epoch 171/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0299

Epoch 172/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0288

Epoch 173/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0286

Epoch 174/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0276

Epoch 175/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0254

Epoch 176/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0313

Epoch 177/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0290

Epoch 178/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0249

Epoch 179/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0258

Epoch 180/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0297

Epoch 181/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0329

Epoch 182/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0243

Epoch 183/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0232

Epoch 184/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0238

Epoch 185/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0295

Epoch 186/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0258

Epoch 187/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0230

Epoch 188/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0198

Epoch 189/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0163

Epoch 190/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0160

Epoch 191/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0459

Epoch 192/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0322

Epoch 193/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0371

Epoch 194/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0355

Epoch 195/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0324

Epoch 196/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0286

Epoch 197/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0224

Epoch 198/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0191

Epoch 199/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0190

Epoch 200/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0213

Epoch 201/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0155

Epoch 202/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0166

Epoch 203/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0136

Epoch 204/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0144

Epoch 205/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0130

Epoch 206/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0120

Epoch 207/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0103

Epoch 208/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0110

Epoch 209/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0130

Epoch 210/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0118

Epoch 211/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0136

Epoch 212/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0109

Epoch 213/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0114

Epoch 214/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0109

Epoch 215/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0106

Epoch 216/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0120

Epoch 217/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0126

Epoch 218/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0092

Epoch 219/500

5/5 [==============================] - 0s 83ms/step - loss: 0.0096

Epoch 220/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0082

Epoch 221/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0100

Epoch 222/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0092

Epoch 223/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0082

Epoch 224/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0094

Epoch 225/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0104

Epoch 226/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0089

Epoch 227/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0119

Epoch 228/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0077

Epoch 229/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0155

Epoch 230/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0112

Epoch 231/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0084

Epoch 232/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0120

Epoch 233/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0168

Epoch 234/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0176

Epoch 235/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0192

Epoch 236/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0129

Epoch 237/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0217

Epoch 238/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0135

Epoch 239/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0166

Epoch 240/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0124

Epoch 241/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0165

Epoch 242/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0221

Epoch 243/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0205

Epoch 244/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0168

Epoch 245/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0113

Epoch 246/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0096

Epoch 247/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0108

Epoch 248/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0075

Epoch 249/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0080

Epoch 250/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0066

Epoch 251/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0058

Epoch 252/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0058

Epoch 253/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0059

Epoch 254/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0063

Epoch 255/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0092

Epoch 256/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0051

Epoch 257/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0049

Epoch 258/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0044

Epoch 259/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0038

Epoch 260/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0045

Epoch 261/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0037

Epoch 262/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0044

Epoch 263/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0058

Epoch 264/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0061

Epoch 265/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0048

Epoch 266/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0070

Epoch 267/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0115

Epoch 268/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0132

Epoch 269/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0143

Epoch 270/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0217

Epoch 271/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0219

Epoch 272/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0113

Epoch 273/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0085

Epoch 274/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0147

Epoch 275/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0086

Epoch 276/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0071

Epoch 277/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0056

Epoch 278/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0043

Epoch 279/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0038

Epoch 280/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0029

Epoch 281/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0027

Epoch 282/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0025

Epoch 283/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0022

Epoch 284/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0020

Epoch 285/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0019

Epoch 286/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0019

Epoch 287/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0018

Epoch 288/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0021

Epoch 289/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0022

Epoch 290/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0019

Epoch 291/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0019

Epoch 292/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0023

Epoch 293/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0019

Epoch 294/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0016

Epoch 295/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0015

Epoch 296/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0013

Epoch 297/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0014

Epoch 298/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0012

Epoch 299/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0013

Epoch 300/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0015

Epoch 301/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0036

Epoch 302/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0067

Epoch 303/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0076

Epoch 304/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0068

Epoch 305/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0074

Epoch 306/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0063

Epoch 307/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0094

Epoch 308/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0022

Epoch 309/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0030

Epoch 310/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0018

Epoch 311/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0027

Epoch 312/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0013

Epoch 313/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0015

Epoch 314/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0010

Epoch 315/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0013

Epoch 316/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0011

Epoch 317/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0011

Epoch 318/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0010

Epoch 319/500

5/5 [==============================] - 0s 72ms/step - loss: 8.6427e-04

Epoch 320/500

5/5 [==============================] - 0s 73ms/step - loss: 7.3188e-04

Epoch 321/500

5/5 [==============================] - 0s 73ms/step - loss: 7.7150e-04

Epoch 322/500

5/5 [==============================] - 0s 74ms/step - loss: 8.3312e-04

Epoch 323/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 324/500

5/5 [==============================] - 0s 77ms/step - loss: 5.9238e-04

Epoch 325/500

5/5 [==============================] - 0s 73ms/step - loss: 6.5032e-04

Epoch 326/500

5/5 [==============================] - 0s 68ms/step - loss: 5.8441e-04

Epoch 327/500

5/5 [==============================] - 0s 71ms/step - loss: 5.8695e-04

Epoch 328/500

5/5 [==============================] - 0s 69ms/step - loss: 5.0752e-04

Epoch 329/500

5/5 [==============================] - 0s 70ms/step - loss: 5.3487e-04

Epoch 330/500

5/5 [==============================] - 0s 69ms/step - loss: 5.6448e-04

Epoch 331/500

5/5 [==============================] - 0s 72ms/step - loss: 6.1445e-04

Epoch 332/500

5/5 [==============================] - 0s 70ms/step - loss: 9.0924e-04

Epoch 333/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 334/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0011

Epoch 335/500

5/5 [==============================] - 0s 72ms/step - loss: 9.1898e-04

Epoch 336/500

5/5 [==============================] - 0s 71ms/step - loss: 6.1120e-04

Epoch 337/500

5/5 [==============================] - 0s 74ms/step - loss: 7.0305e-04

Epoch 338/500

5/5 [==============================] - 0s 71ms/step - loss: 7.7452e-04

Epoch 339/500

5/5 [==============================] - 0s 78ms/step - loss: 7.0101e-04

Epoch 340/500

5/5 [==============================] - 0s 70ms/step - loss: 5.8251e-04

Epoch 341/500

5/5 [==============================] - 0s 79ms/step - loss: 9.3046e-04

Epoch 342/500

5/5 [==============================] - 0s 80ms/step - loss: 8.9404e-04

Epoch 343/500

5/5 [==============================] - 0s 69ms/step - loss: 6.3385e-04

Epoch 344/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0014

Epoch 345/500

5/5 [==============================] - 0s 71ms/step - loss: 9.1381e-04

Epoch 346/500

5/5 [==============================] - 0s 71ms/step - loss: 9.0312e-04

Epoch 347/500

5/5 [==============================] - 0s 67ms/step - loss: 6.5900e-04

Epoch 348/500

5/5 [==============================] - 0s 73ms/step - loss: 7.9192e-04

Epoch 349/500

5/5 [==============================] - 0s 69ms/step - loss: 6.0859e-04

Epoch 350/500

5/5 [==============================] - 0s 72ms/step - loss: 6.7143e-04

Epoch 351/500

5/5 [==============================] - 0s 71ms/step - loss: 4.1511e-04

Epoch 352/500

5/5 [==============================] - 0s 75ms/step - loss: 4.2865e-04

Epoch 353/500

5/5 [==============================] - 0s 71ms/step - loss: 4.9107e-04

Epoch 354/500

5/5 [==============================] - 0s 65ms/step - loss: 4.0848e-04

Epoch 355/500

5/5 [==============================] - 0s 65ms/step - loss: 3.4476e-04

Epoch 356/500

5/5 [==============================] - 0s 75ms/step - loss: 3.3911e-04

Epoch 357/500

5/5 [==============================] - 0s 65ms/step - loss: 2.7905e-04

Epoch 358/500

5/5 [==============================] - 0s 74ms/step - loss: 2.6521e-04

Epoch 359/500

5/5 [==============================] - 0s 71ms/step - loss: 3.0386e-04

Epoch 360/500

5/5 [==============================] - 0s 76ms/step - loss: 2.6127e-04

Epoch 361/500

5/5 [==============================] - 0s 71ms/step - loss: 2.3923e-04

Epoch 362/500

5/5 [==============================] - 0s 71ms/step - loss: 2.7092e-04

Epoch 363/500

5/5 [==============================] - 0s 70ms/step - loss: 2.1081e-04

Epoch 364/500

5/5 [==============================] - 0s 75ms/step - loss: 2.2792e-04

Epoch 365/500

5/5 [==============================] - 0s 70ms/step - loss: 2.4067e-04

Epoch 366/500

5/5 [==============================] - 0s 68ms/step - loss: 2.0851e-04

Epoch 367/500

5/5 [==============================] - 0s 73ms/step - loss: 1.8146e-04

Epoch 368/500

5/5 [==============================] - 0s 72ms/step - loss: 2.2886e-04

Epoch 369/500

5/5 [==============================] - 0s 75ms/step - loss: 2.1991e-04

Epoch 370/500

5/5 [==============================] - 0s 70ms/step - loss: 2.3238e-04

Epoch 371/500

5/5 [==============================] - 0s 65ms/step - loss: 1.7227e-04

Epoch 372/500

5/5 [==============================] - 0s 74ms/step - loss: 1.8564e-04

Epoch 373/500

5/5 [==============================] - 0s 71ms/step - loss: 2.0887e-04

Epoch 374/500

5/5 [==============================] - 0s 68ms/step - loss: 2.0820e-04

Epoch 375/500

5/5 [==============================] - 0s 73ms/step - loss: 2.7565e-04

Epoch 376/500

5/5 [==============================] - 0s 74ms/step - loss: 1.5595e-04

Epoch 377/500

5/5 [==============================] - 0s 70ms/step - loss: 3.0087e-04

Epoch 378/500

5/5 [==============================] - 0s 76ms/step - loss: 3.8012e-04

Epoch 379/500

5/5 [==============================] - 0s 67ms/step - loss: 4.8643e-04

Epoch 380/500

5/5 [==============================] - 0s 69ms/step - loss: 3.2567e-04

Epoch 381/500

5/5 [==============================] - 0s 68ms/step - loss: 8.7728e-04

Epoch 382/500

5/5 [==============================] - 0s 74ms/step - loss: 9.3308e-04

Epoch 383/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0025

Epoch 384/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0077

Epoch 385/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0040

Epoch 386/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0057

Epoch 387/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0065

Epoch 388/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0109

Epoch 389/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0078

Epoch 390/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0101

Epoch 391/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0078

Epoch 392/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0058

Epoch 393/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0142

Epoch 394/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0081

Epoch 395/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0189

Epoch 396/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0142

Epoch 397/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0193

Epoch 398/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0102

Epoch 399/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0207

Epoch 400/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0336

Epoch 401/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0205

Epoch 402/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0191

Epoch 403/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0112

Epoch 404/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0132

Epoch 405/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0114

Epoch 406/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0069

Epoch 407/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0052

Epoch 408/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0046

Epoch 409/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0037

Epoch 410/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0030

Epoch 411/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0025

Epoch 412/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0016

Epoch 413/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0017

Epoch 414/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0015

Epoch 415/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0017

Epoch 416/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0017

Epoch 417/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0012

Epoch 418/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0012

Epoch 419/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0011

Epoch 420/500

5/5 [==============================] - 0s 72ms/step - loss: 9.2474e-04

Epoch 421/500

5/5 [==============================] - 0s 71ms/step - loss: 9.6337e-04

Epoch 422/500

5/5 [==============================] - 0s 70ms/step - loss: 9.3275e-04

Epoch 423/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 424/500

5/5 [==============================] - 0s 74ms/step - loss: 8.4384e-04

Epoch 425/500

5/5 [==============================] - 0s 80ms/step - loss: 6.1407e-04

Epoch 426/500

5/5 [==============================] - 0s 70ms/step - loss: 4.2823e-04

Epoch 427/500

5/5 [==============================] - 0s 69ms/step - loss: 4.0385e-04

Epoch 428/500

5/5 [==============================] - 0s 73ms/step - loss: 3.2599e-04

Epoch 429/500

5/5 [==============================] - 0s 68ms/step - loss: 3.2153e-04

Epoch 430/500

5/5 [==============================] - 0s 79ms/step - loss: 2.9805e-04

Epoch 431/500

5/5 [==============================] - 0s 71ms/step - loss: 2.9984e-04

Epoch 432/500

5/5 [==============================] - 0s 71ms/step - loss: 2.9355e-04

Epoch 433/500

5/5 [==============================] - 0s 72ms/step - loss: 2.4914e-04

Epoch 434/500

5/5 [==============================] - 0s 72ms/step - loss: 2.6341e-04

Epoch 435/500

5/5 [==============================] - 0s 67ms/step - loss: 2.4015e-04

Epoch 436/500

5/5 [==============================] - 0s 72ms/step - loss: 2.3156e-04

Epoch 437/500

5/5 [==============================] - 0s 71ms/step - loss: 2.1043e-04

Epoch 438/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9793e-04

Epoch 439/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9175e-04

Epoch 440/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9362e-04

Epoch 441/500

5/5 [==============================] - 0s 70ms/step - loss: 1.9220e-04

Epoch 442/500

5/5 [==============================] - 0s 71ms/step - loss: 1.9858e-04

Epoch 443/500

5/5 [==============================] - 0s 72ms/step - loss: 2.1231e-04

Epoch 444/500

5/5 [==============================] - 0s 66ms/step - loss: 2.1051e-04

Epoch 445/500

5/5 [==============================] - 0s 76ms/step - loss: 2.0049e-04

Epoch 446/500

5/5 [==============================] - 0s 72ms/step - loss: 2.1215e-04

Epoch 447/500

5/5 [==============================] - 0s 68ms/step - loss: 2.5678e-04

Epoch 448/500

5/5 [==============================] - 0s 71ms/step - loss: 2.2288e-04

Epoch 449/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9712e-04

Epoch 450/500

5/5 [==============================] - 0s 70ms/step - loss: 1.9703e-04

Epoch 451/500

5/5 [==============================] - 0s 75ms/step - loss: 1.9111e-04

Epoch 452/500

5/5 [==============================] - 0s 68ms/step - loss: 1.8569e-04

Epoch 453/500

5/5 [==============================] - 0s 73ms/step - loss: 1.7586e-04

Epoch 454/500

5/5 [==============================] - 0s 74ms/step - loss: 1.7103e-04

Epoch 455/500

5/5 [==============================] - 0s 66ms/step - loss: 1.9805e-04

Epoch 456/500

5/5 [==============================] - 0s 72ms/step - loss: 2.1587e-04

Epoch 457/500

5/5 [==============================] - 0s 73ms/step - loss: 1.8554e-04

Epoch 458/500

5/5 [==============================] - 0s 77ms/step - loss: 1.7778e-04

Epoch 459/500

5/5 [==============================] - 0s 73ms/step - loss: 2.3055e-04

Epoch 460/500

5/5 [==============================] - 0s 67ms/step - loss: 1.9337e-04

Epoch 461/500

5/5 [==============================] - 0s 81ms/step - loss: 1.8697e-04

Epoch 462/500

5/5 [==============================] - 0s 73ms/step - loss: 1.8628e-04

Epoch 463/500

5/5 [==============================] - 0s 76ms/step - loss: 1.7037e-04

Epoch 464/500

5/5 [==============================] - 0s 72ms/step - loss: 1.9468e-04

Epoch 465/500

5/5 [==============================] - 0s 73ms/step - loss: 1.9341e-04

Epoch 466/500

5/5 [==============================] - 0s 70ms/step - loss: 2.8241e-04

Epoch 467/500

5/5 [==============================] - 0s 73ms/step - loss: 3.3427e-04

Epoch 468/500

5/5 [==============================] - 0s 70ms/step - loss: 6.9837e-04

Epoch 469/500

5/5 [==============================] - 0s 78ms/step - loss: 4.2515e-04

Epoch 470/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0032

Epoch 471/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0026

Epoch 472/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0057

Epoch 473/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0081

Epoch 474/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0067

Epoch 475/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0038

Epoch 476/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0031

Epoch 477/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0013

Epoch 478/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0011

Epoch 479/500

5/5 [==============================] - 0s 69ms/step - loss: 7.6646e-04

Epoch 480/500

5/5 [==============================] - 0s 72ms/step - loss: 5.6775e-04

Epoch 481/500

5/5 [==============================] - 0s 70ms/step - loss: 5.3050e-04

Epoch 482/500

5/5 [==============================] - 0s 74ms/step - loss: 5.6809e-04

Epoch 483/500

5/5 [==============================] - 0s 65ms/step - loss: 9.2664e-04

Epoch 484/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0012

Epoch 485/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0013

Epoch 486/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0016

Epoch 487/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0012

Epoch 488/500

5/5 [==============================] - 0s 84ms/step - loss: 0.0011

Epoch 489/500

5/5 [==============================] - 0s 71ms/step - loss: 7.8214e-04

Epoch 490/500

5/5 [==============================] - 0s 68ms/step - loss: 4.5496e-04

Epoch 491/500

5/5 [==============================] - 0s 69ms/step - loss: 2.6216e-04

Epoch 492/500

5/5 [==============================] - 0s 68ms/step - loss: 2.1499e-04

Epoch 493/500

5/5 [==============================] - 0s 74ms/step - loss: 3.7210e-04

Epoch 494/500

5/5 [==============================] - 0s 72ms/step - loss: 2.5280e-04

Epoch 495/500

5/5 [==============================] - 0s 71ms/step - loss: 1.9074e-04

Epoch 496/500

5/5 [==============================] - 0s 77ms/step - loss: 2.0284e-04

Epoch 497/500

5/5 [==============================] - 0s 75ms/step - loss: 1.5633e-04

Epoch 498/500

5/5 [==============================] - 0s 69ms/step - loss: 2.1866e-04

Epoch 499/500

5/5 [==============================] - 0s 69ms/step - loss: 1.9662e-04

Epoch 500/500

5/5 [==============================] - 0s 70ms/step - loss: 2.0453e-04

Epoch 1/500

5/5 [==============================] - 1s 197ms/step - loss: 0.2343

Epoch 2/500

5/5 [==============================] - 0s 71ms/step - loss: 0.1491

Epoch 3/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0872

Epoch 4/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0580

Epoch 5/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0584

Epoch 6/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0515

Epoch 7/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0484

Epoch 8/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0502

Epoch 9/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0504

Epoch 10/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0505

Epoch 11/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0499

Epoch 12/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0501

Epoch 13/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0487

Epoch 14/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0484

Epoch 15/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0483

Epoch 16/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0487

Epoch 17/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0484

Epoch 18/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0480

Epoch 19/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0492

Epoch 20/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0484

Epoch 21/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0481

Epoch 22/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0483

Epoch 23/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0480

Epoch 24/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0482

Epoch 25/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0487

Epoch 26/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0481

Epoch 27/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0495

Epoch 28/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0481

Epoch 29/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0483

Epoch 30/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0481

Epoch 31/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0480

Epoch 32/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0484

Epoch 33/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0480

Epoch 34/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0484

Epoch 35/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0485

Epoch 36/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0481

Epoch 37/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0477

Epoch 38/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0478

Epoch 39/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0481

Epoch 40/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0489

Epoch 41/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0487

Epoch 42/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0474

Epoch 43/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0476

Epoch 44/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0481

Epoch 45/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0470

Epoch 46/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0477

Epoch 47/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0475

Epoch 48/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0478

Epoch 49/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0474

Epoch 50/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0474

Epoch 51/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0480

Epoch 52/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0469

Epoch 53/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0473

Epoch 54/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0477

Epoch 55/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0474

Epoch 56/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0468

Epoch 57/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0474

Epoch 58/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0473

Epoch 59/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0487

Epoch 60/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0475

Epoch 61/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0481

Epoch 62/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0469

Epoch 63/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0470

Epoch 64/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0474

Epoch 65/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0468

Epoch 66/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0474

Epoch 67/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0466

Epoch 68/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0464

Epoch 69/500

5/5 [==============================] - 0s 61ms/step - loss: 0.0475

Epoch 70/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0463

Epoch 71/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0460

Epoch 72/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0474

Epoch 73/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0466

Epoch 74/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0466

Epoch 75/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0467

Epoch 76/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0480

Epoch 77/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0462

Epoch 78/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0474

Epoch 79/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0459

Epoch 80/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0455

Epoch 81/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0453

Epoch 82/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0453

Epoch 83/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0453

Epoch 84/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0455

Epoch 85/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0449

Epoch 86/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0457

Epoch 87/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0446

Epoch 88/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0486

Epoch 89/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0464

Epoch 90/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0447

Epoch 91/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0446

Epoch 92/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0444

Epoch 93/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0437

Epoch 94/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0440

Epoch 95/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0435

Epoch 96/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0435

Epoch 97/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0439

Epoch 98/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0435

Epoch 99/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0432

Epoch 100/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0436

Epoch 101/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0430

Epoch 102/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0457

Epoch 103/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0442

Epoch 104/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0435

Epoch 105/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0427

Epoch 106/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0429

Epoch 107/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0431

Epoch 108/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0419

Epoch 109/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0417

Epoch 110/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0421

Epoch 111/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0440

Epoch 112/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0433

Epoch 113/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0419

Epoch 114/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0405

Epoch 115/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0422

Epoch 116/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0417

Epoch 117/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0405

Epoch 118/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0399

Epoch 119/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0405

Epoch 120/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0401

Epoch 121/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0420

Epoch 122/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0384

Epoch 123/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0409

Epoch 124/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0402

Epoch 125/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0385

Epoch 126/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0391

Epoch 127/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0402

Epoch 128/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0403

Epoch 129/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0373

Epoch 130/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0380

Epoch 131/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0376

Epoch 132/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0372

Epoch 133/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0374

Epoch 134/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0382

Epoch 135/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0356

Epoch 136/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0361

Epoch 137/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0356

Epoch 138/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0378

Epoch 139/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0394

Epoch 140/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0336

Epoch 141/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0406

Epoch 142/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0358

Epoch 143/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0394

Epoch 144/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0341

Epoch 145/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0375

Epoch 146/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0334

Epoch 147/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0340

Epoch 148/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0366

Epoch 149/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0317

Epoch 150/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0364

Epoch 151/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0372

Epoch 152/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0346

Epoch 153/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0324

Epoch 154/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0329

Epoch 155/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0341

Epoch 156/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0347

Epoch 157/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0301

Epoch 158/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0323

Epoch 159/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0314

Epoch 160/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0331

Epoch 161/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0305

Epoch 162/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0322

Epoch 163/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0306

Epoch 164/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0322

Epoch 165/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0293

Epoch 166/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0285

Epoch 167/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0271

Epoch 168/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0297

Epoch 169/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0325

Epoch 170/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0332

Epoch 171/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0304

Epoch 172/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0315

Epoch 173/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0313

Epoch 174/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0270

Epoch 175/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0309

Epoch 176/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0280

Epoch 177/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0269

Epoch 178/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0261

Epoch 179/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0252

Epoch 180/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0249

Epoch 181/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0240

Epoch 182/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0235

Epoch 183/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0260

Epoch 184/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0396

Epoch 185/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0334

Epoch 186/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0415

Epoch 187/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0462

Epoch 188/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0363

Epoch 189/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0367

Epoch 190/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0302

Epoch 191/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0354

Epoch 192/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0315

Epoch 193/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0303

Epoch 194/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0283

Epoch 195/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0251

Epoch 196/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0242

Epoch 197/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0232

Epoch 198/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0206

Epoch 199/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0206

Epoch 200/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0215

Epoch 201/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0308

Epoch 202/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0340

Epoch 203/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0356

Epoch 204/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0390

Epoch 205/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0335

Epoch 206/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0347

Epoch 207/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0265

Epoch 208/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0287

Epoch 209/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0257

Epoch 210/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0256

Epoch 211/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0240

Epoch 212/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0214

Epoch 213/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0207

Epoch 214/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0192

Epoch 215/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0182

Epoch 216/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0188

Epoch 217/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0163

Epoch 218/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0159

Epoch 219/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0159

Epoch 220/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0189

Epoch 221/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0177

Epoch 222/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0215

Epoch 223/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0205

Epoch 224/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0195

Epoch 225/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0211

Epoch 226/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0226

Epoch 227/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0200

Epoch 228/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0209

Epoch 229/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0189

Epoch 230/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0143

Epoch 231/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0152

Epoch 232/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0123

Epoch 233/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0129

Epoch 234/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0107

Epoch 235/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0100

Epoch 236/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0096

Epoch 237/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0092

Epoch 238/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0094

Epoch 239/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0087

Epoch 240/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0100

Epoch 241/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0087

Epoch 242/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0132

Epoch 243/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0139

Epoch 244/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0095

Epoch 245/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0103

Epoch 246/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0178

Epoch 247/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0135

Epoch 248/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0112

Epoch 249/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0082

Epoch 250/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0101

Epoch 251/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0088

Epoch 252/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0087

Epoch 253/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0078

Epoch 254/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0071

Epoch 255/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0057

Epoch 256/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0057

Epoch 257/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0059

Epoch 258/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0051

Epoch 259/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0052

Epoch 260/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0052

Epoch 261/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0048

Epoch 262/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0113

Epoch 263/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0175

Epoch 264/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0167

Epoch 265/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0124

Epoch 266/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0087

Epoch 267/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0138

Epoch 268/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0156

Epoch 269/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0093

Epoch 270/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0113

Epoch 271/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0060

Epoch 272/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0077

Epoch 273/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0051

Epoch 274/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0061

Epoch 275/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0042

Epoch 276/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0055

Epoch 277/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0041

Epoch 278/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0084

Epoch 279/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0069

Epoch 280/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0070

Epoch 281/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0053

Epoch 282/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0086

Epoch 283/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0100

Epoch 284/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0117

Epoch 285/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0082

Epoch 286/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0085

Epoch 287/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0101

Epoch 288/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0073

Epoch 289/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0157

Epoch 290/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0221

Epoch 291/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0107

Epoch 292/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0118

Epoch 293/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0069

Epoch 294/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0092

Epoch 295/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0061

Epoch 296/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0044

Epoch 297/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0045

Epoch 298/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0033

Epoch 299/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0034

Epoch 300/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0034

Epoch 301/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0029

Epoch 302/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0031

Epoch 303/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0027

Epoch 304/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0029

Epoch 305/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0025

Epoch 306/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0025

Epoch 307/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0024

Epoch 308/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0022

Epoch 309/500

5/5 [==============================] - 0s 85ms/step - loss: 0.0023

Epoch 310/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0021

Epoch 311/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0023

Epoch 312/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0024

Epoch 313/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0021

Epoch 314/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0020

Epoch 315/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0018

Epoch 316/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0019

Epoch 317/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0019

Epoch 318/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0020

Epoch 319/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0017

Epoch 320/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0017

Epoch 321/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0017

Epoch 322/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0015

Epoch 323/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0015

Epoch 324/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0014

Epoch 325/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0014

Epoch 326/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0014

Epoch 327/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0014

Epoch 328/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0014

Epoch 329/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0015

Epoch 330/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0015

Epoch 331/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0025

Epoch 332/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0032

Epoch 333/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0031

Epoch 334/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0016

Epoch 335/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0018

Epoch 336/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0012

Epoch 337/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0012

Epoch 338/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0011

Epoch 339/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0013

Epoch 340/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0010

Epoch 341/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0014

Epoch 342/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0012

Epoch 343/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 344/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0010

Epoch 345/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0010

Epoch 346/500

5/5 [==============================] - 0s 77ms/step - loss: 8.6833e-04

Epoch 347/500

5/5 [==============================] - 0s 73ms/step - loss: 8.2185e-04

Epoch 348/500

5/5 [==============================] - 0s 71ms/step - loss: 8.8680e-04

Epoch 349/500

5/5 [==============================] - 0s 77ms/step - loss: 7.0971e-04

Epoch 350/500

5/5 [==============================] - 0s 69ms/step - loss: 8.4164e-04

Epoch 351/500

5/5 [==============================] - 0s 68ms/step - loss: 7.8575e-04

Epoch 352/500

5/5 [==============================] - 0s 73ms/step - loss: 7.9335e-04

Epoch 353/500

5/5 [==============================] - 0s 70ms/step - loss: 8.8992e-04

Epoch 354/500

5/5 [==============================] - 0s 74ms/step - loss: 6.9523e-04

Epoch 355/500

5/5 [==============================] - 0s 67ms/step - loss: 6.7955e-04

Epoch 356/500

5/5 [==============================] - 0s 74ms/step - loss: 6.1650e-04

Epoch 357/500

5/5 [==============================] - 0s 72ms/step - loss: 6.8811e-04

Epoch 358/500

5/5 [==============================] - 0s 70ms/step - loss: 7.9343e-04

Epoch 359/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0017

Epoch 360/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0018

Epoch 361/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0021

Epoch 362/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0017

Epoch 363/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 364/500

5/5 [==============================] - 0s 71ms/step - loss: 6.0833e-04

Epoch 365/500

5/5 [==============================] - 0s 68ms/step - loss: 6.5503e-04

Epoch 366/500

5/5 [==============================] - 0s 69ms/step - loss: 6.3454e-04

Epoch 367/500

5/5 [==============================] - 0s 64ms/step - loss: 6.3314e-04

Epoch 368/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0011

Epoch 369/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0015

Epoch 370/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0023

Epoch 371/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0022

Epoch 372/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0017

Epoch 373/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0025

Epoch 374/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0027

Epoch 375/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0011

Epoch 376/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0050

Epoch 377/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0056

Epoch 378/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0030

Epoch 379/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0073

Epoch 380/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0046

Epoch 381/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0031

Epoch 382/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0025

Epoch 383/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0033

Epoch 384/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0016

Epoch 385/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0017

Epoch 386/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0020

Epoch 387/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0021

Epoch 388/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0011

Epoch 389/500

5/5 [==============================] - 0s 83ms/step - loss: 0.0011

Epoch 390/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0014

Epoch 391/500

5/5 [==============================] - 0s 76ms/step - loss: 7.3570e-04

Epoch 392/500

5/5 [==============================] - 0s 69ms/step - loss: 6.3332e-04

Epoch 393/500

5/5 [==============================] - 0s 73ms/step - loss: 8.8094e-04

Epoch 394/500

5/5 [==============================] - 0s 70ms/step - loss: 6.3973e-04

Epoch 395/500

5/5 [==============================] - 0s 66ms/step - loss: 6.9151e-04

Epoch 396/500

5/5 [==============================] - 0s 69ms/step - loss: 7.3871e-04

Epoch 397/500

5/5 [==============================] - 0s 81ms/step - loss: 5.6250e-04

Epoch 398/500

5/5 [==============================] - 0s 71ms/step - loss: 9.0691e-04

Epoch 399/500

5/5 [==============================] - 0s 74ms/step - loss: 8.5906e-04

Epoch 400/500

5/5 [==============================] - 0s 74ms/step - loss: 6.1695e-04

Epoch 401/500

5/5 [==============================] - 0s 62ms/step - loss: 6.7558e-04

Epoch 402/500

5/5 [==============================] - 0s 74ms/step - loss: 5.4213e-04

Epoch 403/500

5/5 [==============================] - 0s 70ms/step - loss: 3.9655e-04

Epoch 404/500

5/5 [==============================] - 0s 74ms/step - loss: 4.3977e-04

Epoch 405/500

5/5 [==============================] - 0s 75ms/step - loss: 3.8870e-04

Epoch 406/500

5/5 [==============================] - 0s 67ms/step - loss: 4.9923e-04

Epoch 407/500

5/5 [==============================] - 0s 70ms/step - loss: 3.7609e-04

Epoch 408/500

5/5 [==============================] - 0s 67ms/step - loss: 3.5228e-04

Epoch 409/500

5/5 [==============================] - 0s 69ms/step - loss: 3.7040e-04

Epoch 410/500

5/5 [==============================] - 0s 65ms/step - loss: 5.8212e-04

Epoch 411/500

5/5 [==============================] - 0s 70ms/step - loss: 5.7458e-04

Epoch 412/500

5/5 [==============================] - 0s 71ms/step - loss: 5.7026e-04

Epoch 413/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0011

Epoch 414/500

5/5 [==============================] - 0s 75ms/step - loss: 6.9367e-04

Epoch 415/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0011

Epoch 416/500

5/5 [==============================] - 0s 74ms/step - loss: 9.0562e-04

Epoch 417/500

5/5 [==============================] - 0s 70ms/step - loss: 7.1824e-04

Epoch 418/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0011

Epoch 419/500

5/5 [==============================] - 0s 74ms/step - loss: 8.8856e-04

Epoch 420/500

5/5 [==============================] - 0s 69ms/step - loss: 7.1052e-04

Epoch 421/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0010

Epoch 422/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0011

Epoch 423/500

5/5 [==============================] - 0s 71ms/step - loss: 4.7629e-04

Epoch 424/500

5/5 [==============================] - 0s 70ms/step - loss: 3.9323e-04

Epoch 425/500

5/5 [==============================] - 0s 65ms/step - loss: 3.8778e-04

Epoch 426/500

5/5 [==============================] - 0s 67ms/step - loss: 2.6931e-04

Epoch 427/500

5/5 [==============================] - 0s 70ms/step - loss: 4.5416e-04

Epoch 428/500

5/5 [==============================] - 0s 74ms/step - loss: 5.4376e-04

Epoch 429/500

5/5 [==============================] - 0s 74ms/step - loss: 4.6010e-04

Epoch 430/500

5/5 [==============================] - 0s 68ms/step - loss: 3.2351e-04

Epoch 431/500

5/5 [==============================] - 0s 74ms/step - loss: 5.8339e-04

Epoch 432/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0012

Epoch 433/500

5/5 [==============================] - 0s 69ms/step - loss: 3.8044e-04

Epoch 434/500

5/5 [==============================] - 0s 78ms/step - loss: 5.3856e-04

Epoch 435/500

5/5 [==============================] - 0s 67ms/step - loss: 4.7466e-04

Epoch 436/500

5/5 [==============================] - 0s 68ms/step - loss: 4.4019e-04

Epoch 437/500

5/5 [==============================] - 0s 74ms/step - loss: 8.5507e-04

Epoch 438/500

5/5 [==============================] - 0s 67ms/step - loss: 3.2880e-04

Epoch 439/500

5/5 [==============================] - 0s 70ms/step - loss: 5.0505e-04

Epoch 440/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0012

Epoch 441/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0012

Epoch 442/500

5/5 [==============================] - 0s 68ms/step - loss: 2.9122e-04

Epoch 443/500

5/5 [==============================] - 0s 67ms/step - loss: 2.3673e-04

Epoch 444/500

5/5 [==============================] - 0s 66ms/step - loss: 2.7843e-04

Epoch 445/500

5/5 [==============================] - 0s 75ms/step - loss: 1.5144e-04

Epoch 446/500

5/5 [==============================] - 0s 66ms/step - loss: 2.0448e-04

Epoch 447/500

5/5 [==============================] - 0s 76ms/step - loss: 1.7523e-04

Epoch 448/500

5/5 [==============================] - 0s 74ms/step - loss: 3.1159e-04

Epoch 449/500

5/5 [==============================] - 0s 65ms/step - loss: 3.4387e-04

Epoch 450/500

5/5 [==============================] - 0s 67ms/step - loss: 2.2492e-04

Epoch 451/500

5/5 [==============================] - 0s 70ms/step - loss: 1.5413e-04

Epoch 452/500

5/5 [==============================] - 0s 70ms/step - loss: 1.4490e-04

Epoch 453/500

5/5 [==============================] - 0s 70ms/step - loss: 1.6485e-04

Epoch 454/500

5/5 [==============================] - 0s 65ms/step - loss: 1.7791e-04

Epoch 455/500

5/5 [==============================] - 0s 65ms/step - loss: 1.9300e-04

Epoch 456/500

5/5 [==============================] - 0s 69ms/step - loss: 1.4055e-04

Epoch 457/500

5/5 [==============================] - 0s 65ms/step - loss: 1.9110e-04

Epoch 458/500

5/5 [==============================] - 0s 65ms/step - loss: 1.4825e-04

Epoch 459/500

5/5 [==============================] - 0s 69ms/step - loss: 1.1807e-04

Epoch 460/500

5/5 [==============================] - 0s 74ms/step - loss: 1.8296e-04

Epoch 461/500

5/5 [==============================] - 0s 73ms/step - loss: 1.9155e-04

Epoch 462/500

5/5 [==============================] - 0s 68ms/step - loss: 2.2944e-04

Epoch 463/500

5/5 [==============================] - 0s 75ms/step - loss: 2.0475e-04

Epoch 464/500

5/5 [==============================] - 0s 69ms/step - loss: 2.3518e-04

Epoch 465/500

5/5 [==============================] - 0s 68ms/step - loss: 3.2274e-04

Epoch 466/500

5/5 [==============================] - 0s 71ms/step - loss: 5.7172e-04

Epoch 467/500

5/5 [==============================] - 0s 74ms/step - loss: 4.5219e-04

Epoch 468/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0010

Epoch 469/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0012

Epoch 470/500

5/5 [==============================] - 0s 69ms/step - loss: 8.5885e-04

Epoch 471/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0022

Epoch 472/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0020

Epoch 473/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0028

Epoch 474/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0092

Epoch 475/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0064

Epoch 476/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0110

Epoch 477/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0156

Epoch 478/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0084

Epoch 479/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0072

Epoch 480/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0059

Epoch 481/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0049

Epoch 482/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0039

Epoch 483/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0067

Epoch 484/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0055

Epoch 485/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0076

Epoch 486/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0076

Epoch 487/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0145

Epoch 488/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0199

Epoch 489/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0207

Epoch 490/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0206

Epoch 491/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0191

Epoch 492/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0213

Epoch 493/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0140

Epoch 494/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0089

Epoch 495/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0063

Epoch 496/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0090

Epoch 497/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0117

Epoch 498/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0071

Epoch 499/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0049

Epoch 500/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0039

Epoch 1/500

5/5 [==============================] - 1s 196ms/step - loss: 0.1441

Epoch 2/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0883

Epoch 3/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0481

Epoch 4/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0573

Epoch 5/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0508

Epoch 6/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0522

Epoch 7/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0504

Epoch 8/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0489

Epoch 9/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0485

Epoch 10/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0507

Epoch 11/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0509

Epoch 12/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0487

Epoch 13/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0485

Epoch 14/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0483

Epoch 15/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0483

Epoch 16/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0484

Epoch 17/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0495

Epoch 18/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0488

Epoch 19/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0482

Epoch 20/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0485

Epoch 21/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0483

Epoch 22/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0487

Epoch 23/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0479

Epoch 24/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0486

Epoch 25/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0492

Epoch 26/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0478

Epoch 27/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0475

Epoch 28/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0485

Epoch 29/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0493

Epoch 30/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0481

Epoch 31/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0481

Epoch 32/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0480

Epoch 33/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0478

Epoch 34/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0479

Epoch 35/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0478

Epoch 36/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0476

Epoch 37/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0477

Epoch 38/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0492

Epoch 39/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0474

Epoch 40/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0476

Epoch 41/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0489

Epoch 42/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0477

Epoch 43/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0469

Epoch 44/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0475

Epoch 45/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0479

Epoch 46/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0481

Epoch 47/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0473

Epoch 48/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0480

Epoch 49/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0477

Epoch 50/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0486

Epoch 51/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0479

Epoch 52/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0470

Epoch 53/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0472

Epoch 54/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0472

Epoch 55/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0468

Epoch 56/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0473

Epoch 57/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0469

Epoch 58/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0464

Epoch 59/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0489

Epoch 60/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0469

Epoch 61/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0478

Epoch 62/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0474

Epoch 63/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0473

Epoch 64/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0475

Epoch 65/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0473

Epoch 66/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0462

Epoch 67/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0465

Epoch 68/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0473

Epoch 69/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0455

Epoch 70/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0485

Epoch 71/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0468

Epoch 72/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0451

Epoch 73/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0461

Epoch 74/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0461

Epoch 75/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0457

Epoch 76/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0463

Epoch 77/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0451

Epoch 78/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0462

Epoch 79/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0453

Epoch 80/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0450

Epoch 81/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0456

Epoch 82/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0464

Epoch 83/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0442

Epoch 84/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0449

Epoch 85/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0452

Epoch 86/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0443

Epoch 87/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0449

Epoch 88/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0442

Epoch 89/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0439

Epoch 90/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0432

Epoch 91/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0427

Epoch 92/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0431

Epoch 93/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0423

Epoch 94/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0425

Epoch 95/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0424

Epoch 96/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0422

Epoch 97/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0433

Epoch 98/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0434

Epoch 99/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0442

Epoch 100/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0413

Epoch 101/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0413

Epoch 102/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0414

Epoch 103/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0433

Epoch 104/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0414

Epoch 105/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0419

Epoch 106/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0423

Epoch 107/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0409

Epoch 108/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0406

Epoch 109/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0383

Epoch 110/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0381

Epoch 111/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0378

Epoch 112/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0371

Epoch 113/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0379

Epoch 114/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0370

Epoch 115/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0372

Epoch 116/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0401

Epoch 117/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0399

Epoch 118/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0392

Epoch 119/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0367

Epoch 120/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0376

Epoch 121/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0368

Epoch 122/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0354

Epoch 123/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0353

Epoch 124/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0339

Epoch 125/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0329

Epoch 126/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0315

Epoch 127/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0309

Epoch 128/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0292

Epoch 129/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0307

Epoch 130/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0322

Epoch 131/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0335

Epoch 132/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0322

Epoch 133/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0288

Epoch 134/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0285

Epoch 135/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0277

Epoch 136/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0257

Epoch 137/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0232

Epoch 138/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0326

Epoch 139/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0451

Epoch 140/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0458

Epoch 141/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0419

Epoch 142/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0435

Epoch 143/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0445

Epoch 144/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0440

Epoch 145/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0407

Epoch 146/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0397

Epoch 147/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0422

Epoch 148/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0384

Epoch 149/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0376

Epoch 150/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0373

Epoch 151/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0331

Epoch 152/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0323

Epoch 153/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0308

Epoch 154/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0295

Epoch 155/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0275

Epoch 156/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0331

Epoch 157/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0287

Epoch 158/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0297

Epoch 159/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0260

Epoch 160/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0245

Epoch 161/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0199

Epoch 162/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0188

Epoch 163/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0210

Epoch 164/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0238

Epoch 165/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0302

Epoch 166/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0329

Epoch 167/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0269

Epoch 168/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0170

Epoch 169/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0201

Epoch 170/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0183

Epoch 171/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0165

Epoch 172/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0207

Epoch 173/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0208

Epoch 174/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0196

Epoch 175/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0165

Epoch 176/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0141

Epoch 177/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0217

Epoch 178/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0209

Epoch 179/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0174

Epoch 180/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0219

Epoch 181/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0216

Epoch 182/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0169

Epoch 183/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0151

Epoch 184/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0127

Epoch 185/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0157

Epoch 186/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0216

Epoch 187/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0155

Epoch 188/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0418

Epoch 189/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0334

Epoch 190/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0403

Epoch 191/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0401

Epoch 192/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0363

Epoch 193/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0425

Epoch 194/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0368

Epoch 195/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0380

Epoch 196/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0363

Epoch 197/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0337

Epoch 198/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0321

Epoch 199/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0310

Epoch 200/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0287

Epoch 201/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0285

Epoch 202/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0233

Epoch 203/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0244

Epoch 204/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0227

Epoch 205/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0218

Epoch 206/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0201

Epoch 207/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0200

Epoch 208/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0178

Epoch 209/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0170

Epoch 210/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0151

Epoch 211/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0141

Epoch 212/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0153

Epoch 213/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0140

Epoch 214/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0119

Epoch 215/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0114

Epoch 216/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0115

Epoch 217/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0128

Epoch 218/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0118

Epoch 219/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0102

Epoch 220/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0086

Epoch 221/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0099

Epoch 222/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0138

Epoch 223/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0128

Epoch 224/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0081

Epoch 225/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0197

Epoch 226/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0227

Epoch 227/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0173

Epoch 228/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0134

Epoch 229/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0121

Epoch 230/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0109

Epoch 231/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0133

Epoch 232/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0187

Epoch 233/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0189

Epoch 234/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0174

Epoch 235/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0188

Epoch 236/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0159

Epoch 237/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0159

Epoch 238/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0138

Epoch 239/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0183

Epoch 240/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0172

Epoch 241/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0177

Epoch 242/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0133

Epoch 243/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0094

Epoch 244/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0091

Epoch 245/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0077

Epoch 246/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0074

Epoch 247/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0067

Epoch 248/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0084

Epoch 249/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0094

Epoch 250/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0122

Epoch 251/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0120

Epoch 252/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0092

Epoch 253/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0093

Epoch 254/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0094

Epoch 255/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0101

Epoch 256/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0095

Epoch 257/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0080

Epoch 258/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0083

Epoch 259/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0074

Epoch 260/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0093

Epoch 261/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0097

Epoch 262/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0100

Epoch 263/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0104

Epoch 264/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0072

Epoch 265/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0098

Epoch 266/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0117

Epoch 267/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0130

Epoch 268/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0111

Epoch 269/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0083

Epoch 270/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0093

Epoch 271/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0056

Epoch 272/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0052

Epoch 273/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0045

Epoch 274/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0037

Epoch 275/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0041

Epoch 276/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0037

Epoch 277/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0038

Epoch 278/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0033

Epoch 279/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0029

Epoch 280/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0028

Epoch 281/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0026

Epoch 282/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0032

Epoch 283/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0025

Epoch 284/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0029

Epoch 285/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0024

Epoch 286/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0022

Epoch 287/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0031

Epoch 288/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0019

Epoch 289/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0018

Epoch 290/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0021

Epoch 291/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0015

Epoch 292/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0016

Epoch 293/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0017

Epoch 294/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0014

Epoch 295/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0021

Epoch 296/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0033

Epoch 297/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0048

Epoch 298/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0053

Epoch 299/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0101

Epoch 300/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0171

Epoch 301/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0060

Epoch 302/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0094

Epoch 303/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0122

Epoch 304/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0101

Epoch 305/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0073

Epoch 306/500

5/5 [==============================] - 0s 59ms/step - loss: 0.0101

Epoch 307/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0096

Epoch 308/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0128

Epoch 309/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0104

Epoch 310/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0076

Epoch 311/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0055

Epoch 312/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0064

Epoch 313/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0036

Epoch 314/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0029

Epoch 315/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0043

Epoch 316/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0036

Epoch 317/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0034

Epoch 318/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0040

Epoch 319/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0041

Epoch 320/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0056

Epoch 321/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0099

Epoch 322/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0206

Epoch 323/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0265

Epoch 324/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0160

Epoch 325/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0093

Epoch 326/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0084

Epoch 327/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0069

Epoch 328/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0051

Epoch 329/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0053

Epoch 330/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0044

Epoch 331/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0034

Epoch 332/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0029

Epoch 333/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0026

Epoch 334/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0021

Epoch 335/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0020

Epoch 336/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0020

Epoch 337/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0017

Epoch 338/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0019

Epoch 339/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0016

Epoch 340/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0021

Epoch 341/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0015

Epoch 342/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0024

Epoch 343/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0031

Epoch 344/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0030

Epoch 345/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0018

Epoch 346/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0043

Epoch 347/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0080

Epoch 348/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0099

Epoch 349/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0059

Epoch 350/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0044

Epoch 351/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0069

Epoch 352/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0071

Epoch 353/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0050

Epoch 354/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0051

Epoch 355/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0058

Epoch 356/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0069

Epoch 357/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0057

Epoch 358/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0033

Epoch 359/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0048

Epoch 360/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0047

Epoch 361/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0035

Epoch 362/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0030

Epoch 363/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0024

Epoch 364/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0024

Epoch 365/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0026

Epoch 366/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0022

Epoch 367/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0017

Epoch 368/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0018

Epoch 369/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0013

Epoch 370/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0012

Epoch 371/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0017

Epoch 372/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0015

Epoch 373/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0016

Epoch 374/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0025

Epoch 375/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0017

Epoch 376/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0011

Epoch 377/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0016

Epoch 378/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0015

Epoch 379/500

5/5 [==============================] - 0s 74ms/step - loss: 9.0706e-04

Epoch 380/500

5/5 [==============================] - 0s 68ms/step - loss: 9.0713e-04

Epoch 381/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0016

Epoch 382/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0017

Epoch 383/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0018

Epoch 384/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0018

Epoch 385/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0012

Epoch 386/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0013

Epoch 387/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0013

Epoch 388/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0016

Epoch 389/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0020

Epoch 390/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0023

Epoch 391/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0020

Epoch 392/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0019

Epoch 393/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0021

Epoch 394/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0034

Epoch 395/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0063

Epoch 396/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0071

Epoch 397/500

5/5 [==============================] - 0s 62ms/step - loss: 0.0048

Epoch 398/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0030

Epoch 399/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0016

Epoch 400/500

5/5 [==============================] - 0s 76ms/step - loss: 9.3639e-04

Epoch 401/500

5/5 [==============================] - 0s 68ms/step - loss: 8.9461e-04

Epoch 402/500

5/5 [==============================] - 0s 66ms/step - loss: 7.8913e-04

Epoch 403/500

5/5 [==============================] - 0s 67ms/step - loss: 7.4646e-04

Epoch 404/500

5/5 [==============================] - 0s 79ms/step - loss: 9.0182e-04

Epoch 405/500

5/5 [==============================] - 0s 65ms/step - loss: 7.2219e-04

Epoch 406/500

5/5 [==============================] - 0s 81ms/step - loss: 5.9993e-04

Epoch 407/500

5/5 [==============================] - 0s 65ms/step - loss: 5.8801e-04

Epoch 408/500

5/5 [==============================] - 0s 66ms/step - loss: 5.8852e-04

Epoch 409/500

5/5 [==============================] - 0s 62ms/step - loss: 6.4643e-04

Epoch 410/500

5/5 [==============================] - 0s 70ms/step - loss: 6.1886e-04

Epoch 411/500

5/5 [==============================] - 0s 67ms/step - loss: 5.5108e-04

Epoch 412/500

5/5 [==============================] - 0s 64ms/step - loss: 4.9274e-04

Epoch 413/500

5/5 [==============================] - 0s 69ms/step - loss: 4.3937e-04

Epoch 414/500

5/5 [==============================] - 0s 61ms/step - loss: 4.3081e-04

Epoch 415/500

5/5 [==============================] - 0s 66ms/step - loss: 3.9320e-04

Epoch 416/500

5/5 [==============================] - 0s 74ms/step - loss: 4.0349e-04

Epoch 417/500

5/5 [==============================] - 0s 67ms/step - loss: 3.8469e-04

Epoch 418/500

5/5 [==============================] - 0s 71ms/step - loss: 3.9564e-04

Epoch 419/500

5/5 [==============================] - 0s 72ms/step - loss: 4.1035e-04

Epoch 420/500

5/5 [==============================] - 0s 67ms/step - loss: 3.9906e-04

Epoch 421/500

5/5 [==============================] - 0s 70ms/step - loss: 4.4241e-04

Epoch 422/500

5/5 [==============================] - 0s 73ms/step - loss: 3.9764e-04

Epoch 423/500

5/5 [==============================] - 0s 61ms/step - loss: 4.4020e-04

Epoch 424/500

5/5 [==============================] - 0s 63ms/step - loss: 4.5739e-04

Epoch 425/500

5/5 [==============================] - 0s 65ms/step - loss: 7.5073e-04

Epoch 426/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0018

Epoch 427/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0024

Epoch 428/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0053

Epoch 429/500

5/5 [==============================] - 0s 63ms/step - loss: 0.0031

Epoch 430/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0021

Epoch 431/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0015

Epoch 432/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0019

Epoch 433/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0012

Epoch 434/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0013

Epoch 435/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0010

Epoch 436/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0013

Epoch 437/500

5/5 [==============================] - 0s 65ms/step - loss: 7.8862e-04

Epoch 438/500

5/5 [==============================] - 0s 64ms/step - loss: 9.9490e-04

Epoch 439/500

5/5 [==============================] - 0s 70ms/step - loss: 7.9495e-04

Epoch 440/500

5/5 [==============================] - 0s 71ms/step - loss: 7.8389e-04

Epoch 441/500

5/5 [==============================] - 0s 73ms/step - loss: 7.1866e-04

Epoch 442/500

5/5 [==============================] - 0s 76ms/step - loss: 9.3993e-04

Epoch 443/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0029

Epoch 444/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0046

Epoch 445/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0058

Epoch 446/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0068

Epoch 447/500

5/5 [==============================] - 0s 85ms/step - loss: 0.0096

Epoch 448/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0162

Epoch 449/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0134

Epoch 450/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0057

Epoch 451/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0086

Epoch 452/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0113

Epoch 453/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0085

Epoch 454/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0054

Epoch 455/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0055

Epoch 456/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0030

Epoch 457/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0031

Epoch 458/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0017

Epoch 459/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0014

Epoch 460/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0011

Epoch 461/500

5/5 [==============================] - 0s 73ms/step - loss: 8.5840e-04

Epoch 462/500

5/5 [==============================] - 0s 66ms/step - loss: 6.9809e-04

Epoch 463/500

5/5 [==============================] - 0s 68ms/step - loss: 6.5621e-04

Epoch 464/500

5/5 [==============================] - 0s 69ms/step - loss: 6.1112e-04

Epoch 465/500

5/5 [==============================] - 0s 74ms/step - loss: 5.8500e-04

Epoch 466/500

5/5 [==============================] - 0s 74ms/step - loss: 5.1328e-04

Epoch 467/500

5/5 [==============================] - 0s 69ms/step - loss: 5.1588e-04

Epoch 468/500

5/5 [==============================] - 0s 71ms/step - loss: 5.2653e-04

Epoch 469/500

5/5 [==============================] - 0s 68ms/step - loss: 4.6735e-04

Epoch 470/500

5/5 [==============================] - 0s 78ms/step - loss: 4.5830e-04

Epoch 471/500

5/5 [==============================] - 0s 65ms/step - loss: 5.1724e-04

Epoch 472/500

5/5 [==============================] - 0s 68ms/step - loss: 4.4313e-04

Epoch 473/500

5/5 [==============================] - 0s 67ms/step - loss: 4.0828e-04

Epoch 474/500

5/5 [==============================] - 0s 71ms/step - loss: 4.0812e-04

Epoch 475/500

5/5 [==============================] - 0s 67ms/step - loss: 4.1432e-04

Epoch 476/500

5/5 [==============================] - 0s 63ms/step - loss: 3.9929e-04

Epoch 477/500

5/5 [==============================] - 0s 65ms/step - loss: 3.4556e-04

Epoch 478/500

5/5 [==============================] - 0s 71ms/step - loss: 3.3448e-04

Epoch 479/500

5/5 [==============================] - 0s 70ms/step - loss: 3.4508e-04

Epoch 480/500

5/5 [==============================] - 0s 61ms/step - loss: 3.3559e-04

Epoch 481/500

5/5 [==============================] - 0s 73ms/step - loss: 3.1135e-04

Epoch 482/500

5/5 [==============================] - 0s 70ms/step - loss: 3.5616e-04

Epoch 483/500

5/5 [==============================] - 0s 73ms/step - loss: 3.2889e-04

Epoch 484/500

5/5 [==============================] - 0s 81ms/step - loss: 3.0677e-04

Epoch 485/500

5/5 [==============================] - 0s 69ms/step - loss: 2.7050e-04

Epoch 486/500

5/5 [==============================] - 0s 69ms/step - loss: 2.4636e-04

Epoch 487/500

5/5 [==============================] - 0s 76ms/step - loss: 2.7100e-04

Epoch 488/500

5/5 [==============================] - 0s 73ms/step - loss: 3.0710e-04

Epoch 489/500

5/5 [==============================] - 0s 74ms/step - loss: 3.4376e-04

Epoch 490/500

5/5 [==============================] - 0s 71ms/step - loss: 2.7560e-04

Epoch 491/500

5/5 [==============================] - 0s 76ms/step - loss: 3.8191e-04

Epoch 492/500

5/5 [==============================] - 0s 71ms/step - loss: 3.1982e-04

Epoch 493/500

5/5 [==============================] - 0s 79ms/step - loss: 3.6312e-04

Epoch 494/500

5/5 [==============================] - 0s 64ms/step - loss: 2.9536e-04

Epoch 495/500

5/5 [==============================] - 0s 70ms/step - loss: 4.4175e-04

Epoch 496/500

5/5 [==============================] - 0s 71ms/step - loss: 4.3451e-04

Epoch 497/500

5/5 [==============================] - 0s 71ms/step - loss: 4.3311e-04

Epoch 498/500

5/5 [==============================] - 0s 74ms/step - loss: 3.2855e-04

Epoch 499/500

5/5 [==============================] - 0s 69ms/step - loss: 6.2606e-04

Epoch 500/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0019

Epoch 1/500

5/5 [==============================] - 1s 191ms/step - loss: 0.2078

Epoch 2/500

5/5 [==============================] - 0s 74ms/step - loss: 0.1435

Epoch 3/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0816

Epoch 4/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0508

Epoch 5/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0510

Epoch 6/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0553

Epoch 7/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0489

Epoch 8/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0480

Epoch 9/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0508

Epoch 10/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0504

Epoch 11/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0502

Epoch 12/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0483

Epoch 13/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0484

Epoch 14/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0485

Epoch 15/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0484

Epoch 16/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0484

Epoch 17/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0485

Epoch 18/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0483

Epoch 19/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0485

Epoch 20/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0492

Epoch 21/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0482

Epoch 22/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0487

Epoch 23/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0481

Epoch 24/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0493

Epoch 25/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0485

Epoch 26/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0486

Epoch 27/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0480

Epoch 28/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0477

Epoch 29/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0498

Epoch 30/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0487

Epoch 31/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0505

Epoch 32/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0480

Epoch 33/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0481

Epoch 34/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0484

Epoch 35/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0481

Epoch 36/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0481

Epoch 37/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0487

Epoch 38/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0479

Epoch 39/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0477

Epoch 40/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0479

Epoch 41/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0476

Epoch 42/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0484

Epoch 43/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0480

Epoch 44/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0479

Epoch 45/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0477

Epoch 46/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0479

Epoch 47/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0477

Epoch 48/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0475

Epoch 49/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0476

Epoch 50/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0477

Epoch 51/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0474

Epoch 52/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0482

Epoch 53/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0479

Epoch 54/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0470

Epoch 55/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0490

Epoch 56/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0478

Epoch 57/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0490

Epoch 58/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0477

Epoch 59/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0475

Epoch 60/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0473

Epoch 61/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0469

Epoch 62/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0470

Epoch 63/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0478

Epoch 64/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0472

Epoch 65/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0476

Epoch 66/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0480

Epoch 67/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0473

Epoch 68/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0469

Epoch 69/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0477

Epoch 70/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0477

Epoch 71/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0469

Epoch 72/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0469

Epoch 73/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0478

Epoch 74/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0485

Epoch 75/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0475

Epoch 76/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0463

Epoch 77/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0464

Epoch 78/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0472

Epoch 79/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0465

Epoch 80/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0461

Epoch 81/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0459

Epoch 82/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0464

Epoch 83/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0464

Epoch 84/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0454

Epoch 85/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0465

Epoch 86/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0456

Epoch 87/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0466

Epoch 88/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0465

Epoch 89/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0459

Epoch 90/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0452

Epoch 91/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0454

Epoch 92/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0474

Epoch 93/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0462

Epoch 94/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0451

Epoch 95/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0465

Epoch 96/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0448

Epoch 97/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0456

Epoch 98/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0454

Epoch 99/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0474

Epoch 100/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0449

Epoch 101/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0450

Epoch 102/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0458

Epoch 103/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0437

Epoch 104/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0439

Epoch 105/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0439

Epoch 106/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0439

Epoch 107/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0434

Epoch 108/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0441

Epoch 109/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0433

Epoch 110/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0427

Epoch 111/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0434

Epoch 112/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0455

Epoch 113/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0458

Epoch 114/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0432

Epoch 115/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0425

Epoch 116/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0435

Epoch 117/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0449

Epoch 118/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0433

Epoch 119/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0419

Epoch 120/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0433

Epoch 121/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0432

Epoch 122/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0415

Epoch 123/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0403

Epoch 124/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0407

Epoch 125/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0423

Epoch 126/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0410

Epoch 127/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0402

Epoch 128/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0436

Epoch 129/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0426

Epoch 130/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0413

Epoch 131/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0400

Epoch 132/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0410

Epoch 133/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0389

Epoch 134/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0388

Epoch 135/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0387

Epoch 136/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0393

Epoch 137/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0389

Epoch 138/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0376

Epoch 139/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0386

Epoch 140/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0411

Epoch 141/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0457

Epoch 142/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0378

Epoch 143/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0416

Epoch 144/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0368

Epoch 145/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0388

Epoch 146/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0376

Epoch 147/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0373

Epoch 148/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0351

Epoch 149/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0360

Epoch 150/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0363

Epoch 151/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0377

Epoch 152/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0314

Epoch 153/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0421

Epoch 154/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0414

Epoch 155/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0334

Epoch 156/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0407

Epoch 157/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0362

Epoch 158/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0372

Epoch 159/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0361

Epoch 160/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0329

Epoch 161/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0396

Epoch 162/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0365

Epoch 163/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0335

Epoch 164/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0375

Epoch 165/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0334

Epoch 166/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0314

Epoch 167/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0366

Epoch 168/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0319

Epoch 169/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0289

Epoch 170/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0364

Epoch 171/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0318

Epoch 172/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0387

Epoch 173/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0310

Epoch 174/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0300

Epoch 175/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0305

Epoch 176/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0292

Epoch 177/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0397

Epoch 178/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0493

Epoch 179/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0397

Epoch 180/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0396

Epoch 181/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0319

Epoch 182/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0356

Epoch 183/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0304

Epoch 184/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0311

Epoch 185/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0361

Epoch 186/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0280

Epoch 187/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0315

Epoch 188/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0271

Epoch 189/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0260

Epoch 190/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0256

Epoch 191/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0241

Epoch 192/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0234

Epoch 193/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0264

Epoch 194/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0255

Epoch 195/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0347

Epoch 196/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0236

Epoch 197/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0304

Epoch 198/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0285

Epoch 199/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0332

Epoch 200/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0247

Epoch 201/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0235

Epoch 202/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0267

Epoch 203/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0248

Epoch 204/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0204

Epoch 205/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0354

Epoch 206/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0308

Epoch 207/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0315

Epoch 208/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0275

Epoch 209/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0260

Epoch 210/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0229

Epoch 211/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0216

Epoch 212/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0206

Epoch 213/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0209

Epoch 214/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0233

Epoch 215/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0214

Epoch 216/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0254

Epoch 217/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0193

Epoch 218/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0191

Epoch 219/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0228

Epoch 220/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0205

Epoch 221/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0241

Epoch 222/500

5/5 [==============================] - 0s 82ms/step - loss: 0.0192

Epoch 223/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0178

Epoch 224/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0229

Epoch 225/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0183

Epoch 226/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0260

Epoch 227/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0189

Epoch 228/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0200

Epoch 229/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0209

Epoch 230/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0276

Epoch 231/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0212

Epoch 232/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0191

Epoch 233/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0169

Epoch 234/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0193

Epoch 235/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0236

Epoch 236/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0162

Epoch 237/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0166

Epoch 238/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0165

Epoch 239/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0161

Epoch 240/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0183

Epoch 241/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0156

Epoch 242/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0146

Epoch 243/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0143

Epoch 244/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0132

Epoch 245/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0131

Epoch 246/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0132

Epoch 247/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0142

Epoch 248/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0163

Epoch 249/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0178

Epoch 250/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0170

Epoch 251/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0229

Epoch 252/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0153

Epoch 253/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0143

Epoch 254/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0127

Epoch 255/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0137

Epoch 256/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0121

Epoch 257/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0133

Epoch 258/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0115

Epoch 259/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0120

Epoch 260/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0109

Epoch 261/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0120

Epoch 262/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0125

Epoch 263/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0123

Epoch 264/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0128

Epoch 265/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0130

Epoch 266/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0151

Epoch 267/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0228

Epoch 268/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0223

Epoch 269/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0349

Epoch 270/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0220

Epoch 271/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0245

Epoch 272/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0266

Epoch 273/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0160

Epoch 274/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0135

Epoch 275/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0117

Epoch 276/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0120

Epoch 277/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0147

Epoch 278/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0144

Epoch 279/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0135

Epoch 280/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0133

Epoch 281/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0119

Epoch 282/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0137

Epoch 283/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0144

Epoch 284/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0128

Epoch 285/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0112

Epoch 286/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0127

Epoch 287/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0132

Epoch 288/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0153

Epoch 289/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0135

Epoch 290/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0142

Epoch 291/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0115

Epoch 292/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0128

Epoch 293/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0133

Epoch 294/500

5/5 [==============================] - 0s 84ms/step - loss: 0.0119

Epoch 295/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0122

Epoch 296/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0092

Epoch 297/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0087

Epoch 298/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0083

Epoch 299/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0099

Epoch 300/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0088

Epoch 301/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0095

Epoch 302/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0103

Epoch 303/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0089

Epoch 304/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0084

Epoch 305/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0074

Epoch 306/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0076

Epoch 307/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0083

Epoch 308/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0075

Epoch 309/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0069

Epoch 310/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0063

Epoch 311/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0059

Epoch 312/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0058

Epoch 313/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0057

Epoch 314/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0055

Epoch 315/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0051

Epoch 316/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0049

Epoch 317/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0046

Epoch 318/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0044

Epoch 319/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0041

Epoch 320/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0044

Epoch 321/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0038

Epoch 322/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0070

Epoch 323/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0079

Epoch 324/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0172

Epoch 325/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0145

Epoch 326/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0443

Epoch 327/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0537

Epoch 328/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0619

Epoch 329/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0486

Epoch 330/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0395

Epoch 331/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0457

Epoch 332/500

5/5 [==============================] - 0s 84ms/step - loss: 0.0312

Epoch 333/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0356

Epoch 334/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0317

Epoch 335/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0291

Epoch 336/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0262

Epoch 337/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0246

Epoch 338/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0233

Epoch 339/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0214

Epoch 340/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0184

Epoch 341/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0179

Epoch 342/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0155

Epoch 343/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0138

Epoch 344/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0133

Epoch 345/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0118

Epoch 346/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0107

Epoch 347/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0101

Epoch 348/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0089

Epoch 349/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0090

Epoch 350/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0090

Epoch 351/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0086

Epoch 352/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0074

Epoch 353/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0070

Epoch 354/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0069

Epoch 355/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0066

Epoch 356/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0062

Epoch 357/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0068

Epoch 358/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0074

Epoch 359/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0090

Epoch 360/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0065

Epoch 361/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0066

Epoch 362/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0060

Epoch 363/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0069

Epoch 364/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0074

Epoch 365/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0094

Epoch 366/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0146

Epoch 367/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0248

Epoch 368/500

5/5 [==============================] - 0s 80ms/step - loss: 0.0149

Epoch 369/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0092

Epoch 370/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0081

Epoch 371/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0068

Epoch 372/500

5/5 [==============================] - 0s 64ms/step - loss: 0.0067

Epoch 373/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0080

Epoch 374/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0148

Epoch 375/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0122

Epoch 376/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0092

Epoch 377/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0111

Epoch 378/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0074

Epoch 379/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0054

Epoch 380/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0051

Epoch 381/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0044

Epoch 382/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0044

Epoch 383/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0045

Epoch 384/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0048

Epoch 385/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0042

Epoch 386/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0038

Epoch 387/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0039

Epoch 388/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0039

Epoch 389/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0039

Epoch 390/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0039

Epoch 391/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0035

Epoch 392/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0035

Epoch 393/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0036

Epoch 394/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0048

Epoch 395/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0062

Epoch 396/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0036

Epoch 397/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0030

Epoch 398/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0029

Epoch 399/500

5/5 [==============================] - 0s 79ms/step - loss: 0.0027

Epoch 400/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0026

Epoch 401/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0025

Epoch 402/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0024

Epoch 403/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0034

Epoch 404/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0066

Epoch 405/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0107

Epoch 406/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0108

Epoch 407/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0251

Epoch 408/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0509

Epoch 409/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0560

Epoch 410/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0432

Epoch 411/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0329

Epoch 412/500

5/5 [==============================] - 0s 81ms/step - loss: 0.0196

Epoch 413/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0225

Epoch 414/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0186

Epoch 415/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0155

Epoch 416/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0158

Epoch 417/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0142

Epoch 418/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0125

Epoch 419/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0103

Epoch 420/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0080

Epoch 421/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0138

Epoch 422/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0146

Epoch 423/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0079

Epoch 424/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0071

Epoch 425/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0061

Epoch 426/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0064

Epoch 427/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0061

Epoch 428/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0060

Epoch 429/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0065

Epoch 430/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0056

Epoch 431/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0048

Epoch 432/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0047

Epoch 433/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0045

Epoch 434/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0045

Epoch 435/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0046

Epoch 436/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0044

Epoch 437/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0046

Epoch 438/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0044

Epoch 439/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0043

Epoch 440/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0040

Epoch 441/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0040

Epoch 442/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0037

Epoch 443/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0036

Epoch 444/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0034

Epoch 445/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0034

Epoch 446/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0033

Epoch 447/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0032

Epoch 448/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0032

Epoch 449/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0031

Epoch 450/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0031

Epoch 451/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0031

Epoch 452/500

5/5 [==============================] - 0s 69ms/step - loss: 0.0031

Epoch 453/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0030

Epoch 454/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0029

Epoch 455/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0029

Epoch 456/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0028

Epoch 457/500

5/5 [==============================] - 0s 65ms/step - loss: 0.0028

Epoch 458/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0027

Epoch 459/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0027

Epoch 460/500

5/5 [==============================] - 0s 77ms/step - loss: 0.0027

Epoch 461/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0027

Epoch 462/500

5/5 [==============================] - 0s 78ms/step - loss: 0.0029

Epoch 463/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0029

Epoch 464/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0026

Epoch 465/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0025

Epoch 466/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0025

Epoch 467/500

5/5 [==============================] - 0s 68ms/step - loss: 0.0025

Epoch 468/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0025

Epoch 469/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0025

Epoch 470/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0027

Epoch 471/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0024

Epoch 472/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0024

Epoch 473/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0027

Epoch 474/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0023

Epoch 475/500

5/5 [==============================] - 0s 66ms/step - loss: 0.0022

Epoch 476/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0034

Epoch 477/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0036

Epoch 478/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0034

Epoch 479/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0035

Epoch 480/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0035

Epoch 481/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0024

Epoch 482/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0025

Epoch 483/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0024

Epoch 484/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0020

Epoch 485/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0019

Epoch 486/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0022

Epoch 487/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0023

Epoch 488/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0018

Epoch 489/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0025

Epoch 490/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0020

Epoch 491/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0019

Epoch 492/500

5/5 [==============================] - 0s 75ms/step - loss: 0.0020

Epoch 493/500

5/5 [==============================] - 0s 73ms/step - loss: 0.0022

Epoch 494/500

5/5 [==============================] - 0s 70ms/step - loss: 0.0029

Epoch 495/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0033

Epoch 496/500

5/5 [==============================] - 0s 71ms/step - loss: 0.0026

Epoch 497/500

5/5 [==============================] - 0s 74ms/step - loss: 0.0036

Epoch 498/500

5/5 [==============================] - 0s 76ms/step - loss: 0.0018

Epoch 499/500

5/5 [==============================] - 0s 67ms/step - loss: 0.0017

Epoch 500/500

5/5 [==============================] - 0s 72ms/step - loss: 0.0019

[[  759.87189315   911.39010649   731.79821086   915.63465383

   1159.44285458   893.26055696   994.34024895   850.80846316

    882.06570397   722.5795249    842.62067811   671.55724978

    404.3544663    809.88913003   798.3745056   1082.15607364

    718.96773854   886.21412073   701.90289172   432.62849689]

 [  948.92075587   685.13935452   656.18233122   775.12662158

    790.31735265   855.18396554   796.36109201   979.42466879

    904.05554764   631.09090377   731.57037169   237.49572826

    928.33330992   710.86601889   984.72606046   580.51833247

    681.53208943   885.21874399   932.13563505   623.90290906]

 [ 1168.81198006   738.14325985   698.43158735   703.06065701

    688.15578793   861.51518163   816.98939078  1069.18727232

    909.02204318   476.62011981   644.61939929   246.10036398

    964.90356849   851.44499186   898.54467096   710.57412855

    702.17169134   914.76598     1269.20567862   791.64784081]

 [ 1065.79595118   919.00896643   664.50338577   651.85381764

    761.18348891   960.39075978   829.75661929   534.40967031

    871.55862062   790.89349025   845.71930154   303.42575207

    448.09549574   530.57311279   684.97169116  1051.16806304

    661.66048259  1031.18834967  1092.75288246   825.59980591]

 [ 1125.58319852   838.46569476  1114.86609191   657.16444021

    824.23185589   996.92974631  1080.26489552   766.07446866

    825.79831072   887.32414368  1056.82200528   301.7470193

    742.60601177   656.35292802   787.70675608   608.48140538

    538.30059059  1052.71783227   698.83441001   682.64706423]

 [ 1581.99952082   952.27149333  1228.95635304   830.26310797

    960.22928624  1275.85246784  1360.2471526   1344.2035721

   1065.56988822   736.29266542  1169.56380087   425.8242306

    726.08721464   949.8726424   1242.76470913   889.76680777

    368.19246666  1388.70611076   812.84770209   628.84020481]

 [  899.59688638   850.84694768   812.19669459   838.03768222

    795.59393122   833.9016451   1021.77514192  1392.87966357

   1075.13326637   572.09081303   849.17531976   772.99743146

    790.52280082   728.45387851  1138.96424179  1315.99651266

    365.08418172  1076.59363308   907.88500033   653.13629433]

 [  627.37340607   203.47594091   436.4485572    448.93673252

    287.66423893   536.31742638   801.44960773   677.73398952

    730.85159913   520.00423889   473.9058034    731.30108765

    532.97373993   562.48410615   551.97414319  1085.17455238

    357.27059814   636.06488092   801.20336058   749.88620787]

 [  908.54063673  -405.89506      420.26573268   332.29603717

    340.3060533    616.51425657   487.27777724   643.00579419

    525.32842524   679.67850773   653.7969095    767.28288282

    892.01823336   217.1391861    897.48782663   541.00538007

    457.17501842   524.14377461  1128.74398927  1072.27755296]

 [  896.38555441 -1707.80686885   670.85010332   589.73411191

    691.83367079   676.85734966   826.98933956   895.88353317

    675.87973502  1041.10653902   625.08551437   989.70595831

   1068.78412671   689.33572892  1296.62162535   574.8702571

    597.48225833   595.79381024  1099.59478554  1056.16922157]

 [ 1139.02301815    56.80718507   969.14235661   926.35558198

   1131.75929236   886.68906824   973.55941152  1205.51976027

    860.78214558  1039.6272799    748.40231984  1173.041618

   1064.87840469   939.1417029   1508.7438192   1008.78949352

    673.34503101  1021.92240579  1130.59770553   816.05752697]

 [  953.47258736  -337.17229747   729.50281064   903.08353074

   1226.78937811   832.39337458   890.13986547   933.07799464

    751.46062872   754.55144761   943.89656045  1776.57826027

    804.47799018  1297.6350333    620.90135813  1544.0917769

    822.03694604  1050.51441815   875.79191863   776.10321355]]

In [0]:

# Creating a matrix the size of the output matrix used during training

final_result = np.zeros((result.shape[0],1))

In [0]:

# Loop to make final predictions (takeing the mean from each repetition's prediction)

for i in range(result.shape[0]):

    final_result[i] = np.mean(result[i,:])

In [75]:

# Final predictions

final_result

Out[75]:

array([[808.49287841],

       [765.90508964],

       [806.19577969],

       [776.22548536],

       [812.14594346],

       [996.91756986],

       [884.54309833],

       [587.62471087],

       [584.91944573],

       [692.55781772],

       [963.70925636],

       [907.4663398 ]])

In [0]:

# Adjusting shape

final_result = final_result.reshape((12,))

In [77]:

# Final predictions

final_result

Out[77]:

array([808.49287841, 765.90508964, 806.19577969, 776.22548536,

       812.14594346, 996.91756986, 884.54309833, 587.62471087,

       584.91944573, 692.55781772, 963.70925636, 907.4663398 ])

In [78]:

# Model performance

bidirectional_lstm_performance = performance(testset, final_result)

bidirectional_lstm_performance

The prediction MSE is 247543.77

The prediction RMSE is 497.54

The prediction MAPE is 33.47

In [79]:

# Plot

plt.figure(figsize = (20, 6))

 

# Original Series

plt.plot(sales_technology_monthly_mean.index,

         sales_technology_monthly_mean.values,

         label = 'Observed Values',

         color = 'Blue')

 

# Predictions

plt.plot(sales_technology_monthly_mean[36:].index,

         final_result,

         label = 'Stacked LSTM Model Predictions',

         color = 'Red')

 

plt.title('Stacked LSTM Model Predictions')

plt.xlabel('Data')

plt.ylabel('Sales')

plt.legend()

plt.show()

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Stacked LSTM:

Differentiated LSTM:

Bidirectional LSTM:

Part 5: https://colab.research.google.com/drive/1DJ-RdGu0WEjTorNWnqz5a70HZPARlZx0

Part 4: https://colab.research.google.com/drive/10-vxlLMWIPOkZwl7DVY5O0jl1-v_GBWy

Modeling sales time series with an Autoregressive RNN, which was developed specifically for such task.

Model's paper: DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Using the GluonTS package to implement this DeepAR model.

https://gluon-ts.mxnet.io/

GluonTS is ran on the MxNet framework.

Loading Packages

In [0]:

# Installing MxNet

!pip install -q mxnet

     |████████████████████████████████| 68.7MB 56kB/s

When installing GluonTS, Pandas will be removed and reinstalled on version 0.25.3. Without this version GluonTS won't work. This also implies that this Jupyter Notebook cannot be ran on Google Colab, since Colab requires the Pandas version to be 1.0.0 or later.

In [0]:

# Installing GluonTS

!pip install -q gluonts

     |████████████████████████████████| 327kB 4.7MB/s

     |████████████████████████████████| 7.4MB 9.5MB/s

     |████████████████████████████████| 10.4MB 50.6MB/s

     |████████████████████████████████| 194kB 50.1MB/s

     |████████████████████████████████| 235kB 43.8MB/s

  Building wheel for ujson (setup.py) ... done

ERROR: google-colab 1.0.0 has requirement pandas~=1.0.0; python_version >= "3.0", but you'll have pandas 0.25.3 which is incompatible.

ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.

ERROR: Operation cancelled by user

In [0]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import math

import numpy as np

import pandas as pd

import itertools

from pandas import Series

from pandas.tseries.offsets import DateOffset

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

 

# Predictive modeling imports

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

 

# MxNet / GluonTS

import mxnet

import gluonts

from mxnet import gpu, cpu

from mxnet.context import num_gpus

from gluonts.dataset.common import ListDataset

from gluonts.trainer import Trainer

from gluonts.dataset.util import to_pandas

from gluonts.model.deepar import DeepAREstimator

from gluonts.distribution.neg_binomial import NegativeBinomialOutput

from gluonts.evaluation.backtest import make_evaluation_predictions

from gluonts.evaluation import Evaluator

 

# Graphics formatting imports

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

%matplotlib inline

INFO:root:Using CPU

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [0]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/tableau_superstore_sales.csv')

In [0]:

# Shape

data.shape

Out[0]:

(9994, 21)

In [0]:

# Columns

data.columns

Out[0]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [0]:

# Visualizing data

data.head()

Out[0]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

State

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

Kentucky

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

California

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

Florida

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

In [0]:

# Statistic summaries

data.describe()

Out[0]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [0]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [0]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [0]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [0]:

# Checking

data.columns

Out[0]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [0]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'Standard Class', 'Same Day', 'First Class', 'Second Class'}

segment {'Home Office', 'Corporate', 'Consumer'}

country {'United States'}

region {'East', 'South', 'West', 'Central'}

category {'Office Supplies', 'Technology', 'Furniture'}

sub_category {'Chairs', 'Accessories', 'Envelopes', 'Bookcases', 'Appliances', 'Supplies', 'Art', 'Binders', 'Tables', 'Phones', 'Fasteners', 'Furnishings', 'Machines', 'Labels', 'Paper', 'Copiers', 'Storage'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [0]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

In [0]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [0]:

# Checking dataset

ts_technology

Out[0]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [0]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [0]:

# Visualizing the series

ts_technology

Out[0]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

In [0]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [0]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [0]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

Adjusting the index type to DateTimeIndex (which characterizes a time series), so that it's possible to aggregate monthly and obtain the mean monthly sales.

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.base.Index

In [0]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [0]:

# Checking index type

type(sales_technology.index)

Out[0]:

pandas.core.indexes.datetimes.DatetimeIndex

In [0]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [0]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[0]:

pandas.core.series.Series

In [0]:

# Checking the data

sales_technology_monthly_mean

Out[0]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [0]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

Decomposing the series to analyze its componentes.

In [0]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [0]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [0]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Train-Test Split

In [0]:

# Original series

X = sales_technology_monthly_mean

In [0]:

# Using the first 3 years (first 36 rows) for training

X[:-12]

Out[0]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

Freq: MS, Name: sales, dtype: float64

In [0]:

# Using the last year (last 12 rows) for testing

X[-12:]

Out[0]:

order_date

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [0]:

# Train-test split

training, testing = np.array(X[:-12]), np.array(X[-12:])

In [0]:

# Ajusta o shape, pois agora não temos um objeto pd.Series,

# mas sim um array NumPy, que é necessário para treinar o modelo LSTM

trainset = training.reshape(-1,1)

testset = testing.reshape(-1,1)

In [0]:

len(trainset)

Out[0]:

36

In [0]:

training

Out[0]:

array([ 449.04142857,  229.78714286, 2031.948375  ,  613.02893333,

        564.69858824,  766.90590909,  533.60893333,  708.43538462,

       2035.83813333,  596.9009    , 1208.05632   , 1160.73288889,

        925.0708    ,  431.12125   ,  574.66233333,  697.5595    ,

        831.64285714,  429.0244    ,  691.39773333, 1108.90228571,

        950.8564    ,  594.71611111, 1037.98265217, 1619.63763636,

        374.67106667, 1225.8914    , 1135.15010526,  875.91188235,

       1601.81616667, 1023.2595    ,  829.3125    ,  483.6201    ,

       1144.1703    , 1970.835875  , 1085.64236   ,  970.55486957])

In [0]:

trainset

Out[0]:

array([[ 449.04142857],

       [ 229.78714286],

       [2031.948375  ],

       [ 613.02893333],

       [ 564.69858824],

       [ 766.90590909],

       [ 533.60893333],

       [ 708.43538462],

       [2035.83813333],

       [ 596.9009    ],

       [1208.05632   ],

       [1160.73288889],

       [ 925.0708    ],

       [ 431.12125   ],

       [ 574.66233333],

       [ 697.5595    ],

       [ 831.64285714],

       [ 429.0244    ],

       [ 691.39773333],

       [1108.90228571],

       [ 950.8564    ],

       [ 594.71611111],

       [1037.98265217],

       [1619.63763636],

       [ 374.67106667],

       [1225.8914    ],

       [1135.15010526],

       [ 875.91188235],

       [1601.81616667],

       [1023.2595    ],

       [ 829.3125    ],

       [ 483.6201    ],

       [1144.1703    ],

       [1970.835875  ],

       [1085.64236   ],

       [ 970.55486957]])

In [0]:

len(testset)

Out[0]:

12

In [0]:

testset

Out[0]:

array([[1195.21807143],

       [ 430.50171429],

       [1392.85925   ],

       [ 825.55913333],

       [ 678.3294    ],

       [ 853.055     ],

       [1054.99663636],

       [ 978.84233333],

       [1077.70412   ],

       [1493.43922727],

       [1996.75092   ],

       [ 955.86565217]])

GluonTS

In [0]:

# Function

def plot_forecast(predictor, test_data):

    for test_entry, forecast in zip(test_data, predictor.predict(test_data)):

        to_pandas(test_entry).plot(linewidth = 2)

        forecast.plot(color = 'g', prediction_intervals = [50.0, 90.0])

    plt.grid(which = 'both')

Preparing the Dataset for GluonTS

GluonTS doesn't require a specific format for the inputed data. The only requiresments are iterable data and having fields named "start" and "target", where "start" represents the first point on the series index (the date), and "target" represents the series values. This is done with the gluonts.dataset.common.ListDataset class. Here start is pandas.index and target is an iterable with the values on the sales column.

In [0]:

# Training dataset

training_data = ListDataset([{"start": trainset.index[0],

                              "target": trainset.sales[: "2016-12-01"]}],

                            freq = "M")

In [0]:

# Testing dataset

test_data = ListDataset([{"start": testset.index[0],

                           "target": testset.sales[:"2017-12-01"]}],

                        freq = "M")

In [0]:

# Creating model

# https://gluon-ts.mxnet.io/api/gluonts/gluonts.model.deepar.html

gluonts_model = DeepAREstimator(freq = "M",

                                 prediction_length = 12,

                                 distr_output = NegativeBinomialOutput(),

                                 num_layers = 2,

                                 trainer = Trainer(learning_rate = 1e-3,

                                                   epochs = 500,

                                                   num_batches_per_epoch = 50,

                                                   batch_size = 32))

INFO:root:Using CPU

In [0]:

# Training model

gluonts_model_predictor = gluonts_model.train(training_data = training_data)

INFO:root:Start model training

INFO:root:Epoch[0] Learning rate is 0.001

  0%|          | 0/50 [00:00<?, ?it/s]INFO:numexpr.utils:Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.

INFO:numexpr.utils:NumExpr defaulting to 8 threads.

INFO:root:Number of parameters in DeepARTrainingNetwork: 36403

learning rate from ``lr_scheduler`` has been overwritten by ``learning_rate`` in optimizer.

100%|██████████| 50/50 [00:01<00:00, 34.69it/s, avg_epoch_loss=7.91]

INFO:root:Epoch[0] Elapsed time 1.443 seconds

INFO:root:Epoch[0] Evaluation metric 'epoch_loss'=7.908975

INFO:root:Epoch[1] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=7.34]

INFO:root:Epoch[1] Elapsed time 1.319 seconds

INFO:root:Epoch[1] Evaluation metric 'epoch_loss'=7.337769

INFO:root:Epoch[2] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=7.08]

INFO:root:Epoch[2] Elapsed time 1.318 seconds

INFO:root:Epoch[2] Evaluation metric 'epoch_loss'=7.077264

INFO:root:Epoch[3] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=6.83]

INFO:root:Epoch[3] Elapsed time 1.323 seconds

INFO:root:Epoch[3] Evaluation metric 'epoch_loss'=6.828020

INFO:root:Epoch[4] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=6.68]

INFO:root:Epoch[4] Elapsed time 1.319 seconds

INFO:root:Epoch[4] Evaluation metric 'epoch_loss'=6.675156

INFO:root:Epoch[5] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.17it/s, avg_epoch_loss=6.42]

INFO:root:Epoch[5] Elapsed time 1.346 seconds

INFO:root:Epoch[5] Evaluation metric 'epoch_loss'=6.417465

INFO:root:Epoch[6] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 35.98it/s, avg_epoch_loss=6.16]

INFO:root:Epoch[6] Elapsed time 1.391 seconds

INFO:root:Epoch[6] Evaluation metric 'epoch_loss'=6.155249

INFO:root:Epoch[7] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.17it/s, avg_epoch_loss=5.96]

INFO:root:Epoch[7] Elapsed time 1.384 seconds

INFO:root:Epoch[7] Evaluation metric 'epoch_loss'=5.958463

INFO:root:Epoch[8] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.41it/s, avg_epoch_loss=5.78]

INFO:root:Epoch[8] Elapsed time 1.338 seconds

INFO:root:Epoch[8] Evaluation metric 'epoch_loss'=5.784959

INFO:root:Epoch[9] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=5.65]

INFO:root:Epoch[9] Elapsed time 1.311 seconds

INFO:root:Epoch[9] Evaluation metric 'epoch_loss'=5.654531

INFO:root:Epoch[10] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.07it/s, avg_epoch_loss=5.55]

INFO:root:Epoch[10] Elapsed time 1.350 seconds

INFO:root:Epoch[10] Evaluation metric 'epoch_loss'=5.551714

INFO:root:Epoch[11] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.32it/s, avg_epoch_loss=5.49]

INFO:root:Epoch[11] Elapsed time 1.378 seconds

INFO:root:Epoch[11] Evaluation metric 'epoch_loss'=5.486680

INFO:root:Epoch[12] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=5.39]

INFO:root:Epoch[12] Elapsed time 1.310 seconds

INFO:root:Epoch[12] Evaluation metric 'epoch_loss'=5.391356

INFO:root:Epoch[13] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 35.09it/s, avg_epoch_loss=5.36]

INFO:root:Epoch[13] Elapsed time 1.426 seconds

INFO:root:Epoch[13] Evaluation metric 'epoch_loss'=5.357374

INFO:root:Epoch[14] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.90it/s, avg_epoch_loss=5.3]

INFO:root:Epoch[14] Elapsed time 1.356 seconds

INFO:root:Epoch[14] Evaluation metric 'epoch_loss'=5.302440

INFO:root:Epoch[15] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.20it/s, avg_epoch_loss=5.24]

INFO:root:Epoch[15] Elapsed time 1.382 seconds

INFO:root:Epoch[15] Evaluation metric 'epoch_loss'=5.238807

INFO:root:Epoch[16] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.06it/s, avg_epoch_loss=5.25]

INFO:root:Epoch[16] Elapsed time 1.315 seconds

INFO:root:Epoch[16] Evaluation metric 'epoch_loss'=5.250712

INFO:root:Epoch[17] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.22it/s, avg_epoch_loss=5.18]

INFO:root:Epoch[17] Elapsed time 1.309 seconds

INFO:root:Epoch[17] Evaluation metric 'epoch_loss'=5.175333

INFO:root:Epoch[18] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=5.13]

INFO:root:Epoch[18] Elapsed time 1.314 seconds

INFO:root:Epoch[18] Evaluation metric 'epoch_loss'=5.134513

INFO:root:Epoch[19] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.26it/s, avg_epoch_loss=5.14]

INFO:root:Epoch[19] Elapsed time 1.343 seconds

INFO:root:Epoch[19] Evaluation metric 'epoch_loss'=5.140099

INFO:root:Epoch[20] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=5.16]

INFO:root:Epoch[20] Elapsed time 1.319 seconds

INFO:root:Epoch[20] Evaluation metric 'epoch_loss'=5.163877

INFO:root:Epoch[21] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 34.45it/s, avg_epoch_loss=5.06]

INFO:root:Epoch[21] Elapsed time 1.452 seconds

INFO:root:Epoch[21] Evaluation metric 'epoch_loss'=5.061568

INFO:root:Epoch[22] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.01it/s, avg_epoch_loss=5.05]

INFO:root:Epoch[22] Elapsed time 1.352 seconds

INFO:root:Epoch[22] Evaluation metric 'epoch_loss'=5.050069

INFO:root:Epoch[23] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.43it/s, avg_epoch_loss=5.03]

INFO:root:Epoch[23] Elapsed time 1.374 seconds

INFO:root:Epoch[23] Evaluation metric 'epoch_loss'=5.032214

INFO:root:Epoch[24] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.06it/s, avg_epoch_loss=5.03]

INFO:root:Epoch[24] Elapsed time 1.315 seconds

INFO:root:Epoch[24] Evaluation metric 'epoch_loss'=5.034330

INFO:root:Epoch[25] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=5.01]

INFO:root:Epoch[25] Elapsed time 1.316 seconds

INFO:root:Epoch[25] Evaluation metric 'epoch_loss'=5.014648

INFO:root:Epoch[26] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.76it/s, avg_epoch_loss=5]

INFO:root:Epoch[26] Elapsed time 1.325 seconds

INFO:root:Epoch[26] Evaluation metric 'epoch_loss'=5.001250

INFO:root:Epoch[27] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.89it/s, avg_epoch_loss=4.99]

INFO:root:Epoch[27] Elapsed time 1.321 seconds

INFO:root:Epoch[27] Evaluation metric 'epoch_loss'=4.989177

INFO:root:Epoch[28] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.97]

INFO:root:Epoch[28] Elapsed time 1.319 seconds

INFO:root:Epoch[28] Evaluation metric 'epoch_loss'=4.974059

INFO:root:Epoch[29] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.37it/s, avg_epoch_loss=4.99]

INFO:root:Epoch[29] Elapsed time 1.304 seconds

INFO:root:Epoch[29] Evaluation metric 'epoch_loss'=4.985838

INFO:root:Epoch[30] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.76it/s, avg_epoch_loss=4.96]

INFO:root:Epoch[30] Elapsed time 1.325 seconds

INFO:root:Epoch[30] Evaluation metric 'epoch_loss'=4.955548

INFO:root:Epoch[31] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.95]

INFO:root:Epoch[31] Elapsed time 1.326 seconds

INFO:root:Epoch[31] Evaluation metric 'epoch_loss'=4.954384

INFO:root:Epoch[32] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.93]

INFO:root:Epoch[32] Elapsed time 1.308 seconds

INFO:root:Epoch[32] Evaluation metric 'epoch_loss'=4.925572

INFO:root:Epoch[33] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.95]

INFO:root:Epoch[33] Elapsed time 1.317 seconds

INFO:root:Epoch[33] Evaluation metric 'epoch_loss'=4.945440

INFO:root:Epoch[34] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.60it/s, avg_epoch_loss=4.91]

INFO:root:Epoch[34] Elapsed time 1.331 seconds

INFO:root:Epoch[34] Evaluation metric 'epoch_loss'=4.905046

INFO:root:Epoch[35] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.03it/s, avg_epoch_loss=4.9]

INFO:root:Epoch[35] Elapsed time 1.316 seconds

INFO:root:Epoch[35] Evaluation metric 'epoch_loss'=4.899971

INFO:root:Epoch[36] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.89]

INFO:root:Epoch[36] Elapsed time 1.318 seconds

INFO:root:Epoch[36] Evaluation metric 'epoch_loss'=4.893135

INFO:root:Epoch[37] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.91]

INFO:root:Epoch[37] Elapsed time 1.316 seconds

INFO:root:Epoch[37] Evaluation metric 'epoch_loss'=4.910334

INFO:root:Epoch[38] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.27it/s, avg_epoch_loss=4.89]

INFO:root:Epoch[38] Elapsed time 1.308 seconds

INFO:root:Epoch[38] Evaluation metric 'epoch_loss'=4.893278

INFO:root:Epoch[39] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.89it/s, avg_epoch_loss=4.88]

INFO:root:Epoch[39] Elapsed time 1.321 seconds

INFO:root:Epoch[39] Evaluation metric 'epoch_loss'=4.882927

INFO:root:Epoch[40] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.87]

INFO:root:Epoch[40] Elapsed time 1.326 seconds

INFO:root:Epoch[40] Evaluation metric 'epoch_loss'=4.867955

INFO:root:Epoch[41] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.21it/s, avg_epoch_loss=4.88]

INFO:root:Epoch[41] Elapsed time 1.310 seconds

INFO:root:Epoch[41] Evaluation metric 'epoch_loss'=4.883507

INFO:root:Epoch[42] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.88]

INFO:root:Epoch[42] Elapsed time 1.324 seconds

INFO:root:Epoch[42] Evaluation metric 'epoch_loss'=4.884902

INFO:root:Epoch[43] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.09it/s, avg_epoch_loss=4.85]

INFO:root:Epoch[43] Elapsed time 1.349 seconds

INFO:root:Epoch[43] Evaluation metric 'epoch_loss'=4.849318

INFO:root:Epoch[44] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.88]

INFO:root:Epoch[44] Elapsed time 1.322 seconds

INFO:root:Epoch[44] Evaluation metric 'epoch_loss'=4.881761

INFO:root:Epoch[45] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.16it/s, avg_epoch_loss=4.85]

INFO:root:Epoch[45] Elapsed time 1.311 seconds

INFO:root:Epoch[45] Evaluation metric 'epoch_loss'=4.851471

INFO:root:Epoch[46] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.62it/s, avg_epoch_loss=4.86]

INFO:root:Epoch[46] Elapsed time 1.296 seconds

INFO:root:Epoch[46] Evaluation metric 'epoch_loss'=4.856909

INFO:root:Epoch[47] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.44it/s, avg_epoch_loss=4.86]

INFO:root:Epoch[47] Elapsed time 1.302 seconds

INFO:root:Epoch[47] Evaluation metric 'epoch_loss'=4.861635

INFO:root:Epoch[48] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.85]

INFO:root:Epoch[48] Elapsed time 1.313 seconds

INFO:root:Epoch[48] Evaluation metric 'epoch_loss'=4.845951

INFO:root:Epoch[49] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.13it/s, avg_epoch_loss=4.82]

INFO:root:Epoch[49] Elapsed time 1.313 seconds

INFO:root:Epoch[49] Evaluation metric 'epoch_loss'=4.818326

INFO:root:Epoch[50] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.24it/s, avg_epoch_loss=4.83]

INFO:root:Epoch[50] Elapsed time 1.309 seconds

INFO:root:Epoch[50] Evaluation metric 'epoch_loss'=4.826273

INFO:root:Epoch[51] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.34it/s, avg_epoch_loss=4.82]

INFO:root:Epoch[51] Elapsed time 1.377 seconds

INFO:root:Epoch[51] Evaluation metric 'epoch_loss'=4.821697

INFO:root:Epoch[52] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.84]

INFO:root:Epoch[52] Elapsed time 1.316 seconds

INFO:root:Epoch[52] Evaluation metric 'epoch_loss'=4.842250

INFO:root:Epoch[53] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.81]

INFO:root:Epoch[53] Elapsed time 1.320 seconds

INFO:root:Epoch[53] Evaluation metric 'epoch_loss'=4.813155

INFO:root:Epoch[54] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.46it/s, avg_epoch_loss=4.84]

INFO:root:Epoch[54] Elapsed time 1.301 seconds

INFO:root:Epoch[54] Evaluation metric 'epoch_loss'=4.839889

INFO:root:Epoch[55] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.16it/s, avg_epoch_loss=4.8]

INFO:root:Epoch[55] Elapsed time 1.311 seconds

INFO:root:Epoch[55] Evaluation metric 'epoch_loss'=4.795072

INFO:root:Epoch[56] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.77]

INFO:root:Epoch[56] Elapsed time 1.314 seconds

INFO:root:Epoch[56] Evaluation metric 'epoch_loss'=4.771750

INFO:root:Epoch[57] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.79]

INFO:root:Epoch[57] Elapsed time 1.320 seconds

INFO:root:Epoch[57] Evaluation metric 'epoch_loss'=4.791831

INFO:root:Epoch[58] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.79]

INFO:root:Epoch[58] Elapsed time 1.317 seconds

INFO:root:Epoch[58] Evaluation metric 'epoch_loss'=4.787448

INFO:root:Epoch[59] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.16it/s, avg_epoch_loss=4.76]

INFO:root:Epoch[59] Elapsed time 1.347 seconds

INFO:root:Epoch[59] Evaluation metric 'epoch_loss'=4.758240

INFO:root:Epoch[60] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.23it/s, avg_epoch_loss=4.78]

INFO:root:Epoch[60] Elapsed time 1.309 seconds

INFO:root:Epoch[60] Evaluation metric 'epoch_loss'=4.782533

INFO:root:Epoch[61] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.61it/s, avg_epoch_loss=4.8]

INFO:root:Epoch[61] Elapsed time 1.331 seconds

INFO:root:Epoch[61] Evaluation metric 'epoch_loss'=4.804369

INFO:root:Epoch[62] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.39it/s, avg_epoch_loss=4.75]

INFO:root:Epoch[62] Elapsed time 1.375 seconds

INFO:root:Epoch[62] Evaluation metric 'epoch_loss'=4.749014

INFO:root:Epoch[63] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.55it/s, avg_epoch_loss=4.74]

INFO:root:Epoch[63] Elapsed time 1.333 seconds

INFO:root:Epoch[63] Evaluation metric 'epoch_loss'=4.742798

INFO:root:Epoch[64] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.25it/s, avg_epoch_loss=4.82]

INFO:root:Epoch[64] Elapsed time 1.308 seconds

INFO:root:Epoch[64] Evaluation metric 'epoch_loss'=4.819559

INFO:root:Epoch[65] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.31it/s, avg_epoch_loss=4.85]

INFO:root:Epoch[65] Elapsed time 1.306 seconds

INFO:root:Epoch[65] Evaluation metric 'epoch_loss'=4.853737

INFO:root:Epoch[66] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.91it/s, avg_epoch_loss=4.82]

INFO:root:Epoch[66] Elapsed time 1.320 seconds

INFO:root:Epoch[66] Evaluation metric 'epoch_loss'=4.816071

INFO:root:Epoch[67] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.74it/s, avg_epoch_loss=4.82]

INFO:root:Epoch[67] Elapsed time 1.326 seconds

INFO:root:Epoch[67] Evaluation metric 'epoch_loss'=4.815696

INFO:root:Epoch[68] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.74]

INFO:root:Epoch[68] Elapsed time 1.326 seconds

INFO:root:Epoch[68] Evaluation metric 'epoch_loss'=4.743043

INFO:root:Epoch[69] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.48it/s, avg_epoch_loss=4.71]

INFO:root:Epoch[69] Elapsed time 1.301 seconds

INFO:root:Epoch[69] Evaluation metric 'epoch_loss'=4.706826

INFO:root:Epoch[70] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.03it/s, avg_epoch_loss=4.81]

INFO:root:Epoch[70] Elapsed time 1.352 seconds

INFO:root:Epoch[70] Evaluation metric 'epoch_loss'=4.814454

INFO:root:Epoch[71] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.53it/s, avg_epoch_loss=4.84]

INFO:root:Epoch[71] Elapsed time 1.299 seconds

INFO:root:Epoch[71] Evaluation metric 'epoch_loss'=4.835189

INFO:root:Epoch[72] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.75]

INFO:root:Epoch[72] Elapsed time 1.313 seconds

INFO:root:Epoch[72] Evaluation metric 'epoch_loss'=4.754260

INFO:root:Epoch[73] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.33it/s, avg_epoch_loss=4.75]

INFO:root:Epoch[73] Elapsed time 1.306 seconds

INFO:root:Epoch[73] Evaluation metric 'epoch_loss'=4.747565

INFO:root:Epoch[74] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.74]

INFO:root:Epoch[74] Elapsed time 1.317 seconds

INFO:root:Epoch[74] Evaluation metric 'epoch_loss'=4.739699

INFO:root:Epoch[75] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.98it/s, avg_epoch_loss=4.73]

INFO:root:Epoch[75] Elapsed time 1.353 seconds

INFO:root:Epoch[75] Evaluation metric 'epoch_loss'=4.729369

INFO:root:Epoch[76] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.78it/s, avg_epoch_loss=4.71]

INFO:root:Epoch[76] Elapsed time 1.361 seconds

INFO:root:Epoch[76] Evaluation metric 'epoch_loss'=4.705359

INFO:root:Epoch[77] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.69]

INFO:root:Epoch[77] Elapsed time 1.319 seconds

INFO:root:Epoch[77] Evaluation metric 'epoch_loss'=4.689175

INFO:root:Epoch[78] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.72]

INFO:root:Epoch[78] Elapsed time 1.311 seconds

INFO:root:Epoch[78] Evaluation metric 'epoch_loss'=4.724005

INFO:root:Epoch[79] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.71]

INFO:root:Epoch[79] Elapsed time 1.314 seconds

INFO:root:Epoch[79] Evaluation metric 'epoch_loss'=4.707859

INFO:root:Epoch[80] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.29it/s, avg_epoch_loss=4.7]

INFO:root:Epoch[80] Elapsed time 1.379 seconds

INFO:root:Epoch[80] Evaluation metric 'epoch_loss'=4.695344

INFO:root:Epoch[81] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.69]

INFO:root:Epoch[81] Elapsed time 1.316 seconds

INFO:root:Epoch[81] Evaluation metric 'epoch_loss'=4.685401

INFO:root:Epoch[82] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.68]

INFO:root:Epoch[82] Elapsed time 1.314 seconds

INFO:root:Epoch[82] Evaluation metric 'epoch_loss'=4.675446

INFO:root:Epoch[83] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.7]

INFO:root:Epoch[83] Elapsed time 1.320 seconds

INFO:root:Epoch[83] Evaluation metric 'epoch_loss'=4.695039

INFO:root:Epoch[84] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.29it/s, avg_epoch_loss=4.67]

INFO:root:Epoch[84] Elapsed time 1.307 seconds

INFO:root:Epoch[84] Evaluation metric 'epoch_loss'=4.672759

INFO:root:Epoch[85] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.96it/s, avg_epoch_loss=4.67]

INFO:root:Epoch[85] Elapsed time 1.354 seconds

INFO:root:Epoch[85] Evaluation metric 'epoch_loss'=4.665972

INFO:root:Epoch[86] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.66]

INFO:root:Epoch[86] Elapsed time 1.317 seconds

INFO:root:Epoch[86] Evaluation metric 'epoch_loss'=4.655447

INFO:root:Epoch[87] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.78it/s, avg_epoch_loss=4.68]

INFO:root:Epoch[87] Elapsed time 1.361 seconds

INFO:root:Epoch[87] Evaluation metric 'epoch_loss'=4.683816

INFO:root:Epoch[88] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.66it/s, avg_epoch_loss=4.66]

INFO:root:Epoch[88] Elapsed time 1.365 seconds

INFO:root:Epoch[88] Evaluation metric 'epoch_loss'=4.659782

INFO:root:Epoch[89] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 34.60it/s, avg_epoch_loss=4.67]

INFO:root:Epoch[89] Elapsed time 1.446 seconds

INFO:root:Epoch[89] Evaluation metric 'epoch_loss'=4.665016

INFO:root:Epoch[90] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 34.82it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[90] Elapsed time 1.437 seconds

INFO:root:Epoch[90] Evaluation metric 'epoch_loss'=4.636382

INFO:root:Epoch[91] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.82it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[91] Elapsed time 1.323 seconds

INFO:root:Epoch[91] Evaluation metric 'epoch_loss'=4.620934

INFO:root:Epoch[92] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[92] Elapsed time 1.318 seconds

INFO:root:Epoch[92] Evaluation metric 'epoch_loss'=4.606396

INFO:root:Epoch[93] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.87it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[93] Elapsed time 1.322 seconds

INFO:root:Epoch[93] Evaluation metric 'epoch_loss'=4.569764

INFO:root:Epoch[94] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.14it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[94] Elapsed time 1.347 seconds

INFO:root:Epoch[94] Evaluation metric 'epoch_loss'=4.609239

INFO:root:Epoch[95] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.14it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[95] Elapsed time 1.347 seconds

INFO:root:Epoch[95] Evaluation metric 'epoch_loss'=4.589666

INFO:root:Epoch[96] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 34.75it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[96] Elapsed time 1.440 seconds

INFO:root:Epoch[96] Evaluation metric 'epoch_loss'=4.628588

INFO:root:Epoch[97] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.58it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[97] Elapsed time 1.332 seconds

INFO:root:Epoch[97] Evaluation metric 'epoch_loss'=4.596138

INFO:root:Epoch[98] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.55it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[98] Elapsed time 1.333 seconds

INFO:root:Epoch[98] Evaluation metric 'epoch_loss'=4.595384

INFO:root:Epoch[99] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[99] Elapsed time 1.316 seconds

INFO:root:Epoch[99] Evaluation metric 'epoch_loss'=4.597873

INFO:root:Epoch[100] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[100] Elapsed time 1.315 seconds

INFO:root:Epoch[100] Evaluation metric 'epoch_loss'=4.589622

INFO:root:Epoch[101] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.45it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[101] Elapsed time 1.373 seconds

INFO:root:Epoch[101] Evaluation metric 'epoch_loss'=4.571001

INFO:root:Epoch[102] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.27it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[102] Elapsed time 1.308 seconds

INFO:root:Epoch[102] Evaluation metric 'epoch_loss'=4.556369

INFO:root:Epoch[103] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.21it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[103] Elapsed time 1.310 seconds

INFO:root:Epoch[103] Evaluation metric 'epoch_loss'=4.547130

INFO:root:Epoch[104] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.05it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[104] Elapsed time 1.388 seconds

INFO:root:Epoch[104] Evaluation metric 'epoch_loss'=4.523829

INFO:root:Epoch[105] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.69it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[105] Elapsed time 1.328 seconds

INFO:root:Epoch[105] Evaluation metric 'epoch_loss'=4.508866

INFO:root:Epoch[106] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[106] Elapsed time 1.316 seconds

INFO:root:Epoch[106] Evaluation metric 'epoch_loss'=4.613594

INFO:root:Epoch[107] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[107] Elapsed time 1.324 seconds

INFO:root:Epoch[107] Evaluation metric 'epoch_loss'=4.552715

INFO:root:Epoch[108] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.51it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[108] Elapsed time 1.334 seconds

INFO:root:Epoch[108] Evaluation metric 'epoch_loss'=4.622584

INFO:root:Epoch[109] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 36.83it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[109] Elapsed time 1.359 seconds

INFO:root:Epoch[109] Evaluation metric 'epoch_loss'=4.585529

INFO:root:Epoch[110] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.21it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[110] Elapsed time 1.310 seconds

INFO:root:Epoch[110] Evaluation metric 'epoch_loss'=4.604274

INFO:root:Epoch[111] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.78it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[111] Elapsed time 1.324 seconds

INFO:root:Epoch[111] Evaluation metric 'epoch_loss'=4.613225

INFO:root:Epoch[112] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.12it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[112] Elapsed time 1.313 seconds

INFO:root:Epoch[112] Evaluation metric 'epoch_loss'=4.594928

INFO:root:Epoch[113] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.78it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[113] Elapsed time 1.325 seconds

INFO:root:Epoch[113] Evaluation metric 'epoch_loss'=4.597929

INFO:root:Epoch[114] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 37.09it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[114] Elapsed time 1.349 seconds

INFO:root:Epoch[114] Evaluation metric 'epoch_loss'=4.600609

INFO:root:Epoch[115] Learning rate is 0.001

100%|██████████| 50/50 [00:01<00:00, 38.23it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[115] Elapsed time 1.309 seconds

INFO:root:Epoch[115] Evaluation metric 'epoch_loss'=4.554605

INFO:root:Loading parameters from best epoch (105)

INFO:root:Epoch[116] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 36.79it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[116] Elapsed time 1.360 seconds

INFO:root:Epoch[116] Evaluation metric 'epoch_loss'=4.549491

INFO:root:Epoch[117] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[117] Elapsed time 1.314 seconds

INFO:root:Epoch[117] Evaluation metric 'epoch_loss'=4.590574

INFO:root:Epoch[118] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[118] Elapsed time 1.323 seconds

INFO:root:Epoch[118] Evaluation metric 'epoch_loss'=4.601432

INFO:root:Epoch[119] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 37.72it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[119] Elapsed time 1.326 seconds

INFO:root:Epoch[119] Evaluation metric 'epoch_loss'=4.616829

INFO:root:Epoch[120] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 38.09it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[120] Elapsed time 1.314 seconds

INFO:root:Epoch[120] Evaluation metric 'epoch_loss'=4.586191

INFO:root:Epoch[121] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[121] Elapsed time 1.319 seconds

INFO:root:Epoch[121] Evaluation metric 'epoch_loss'=4.614181

INFO:root:Epoch[122] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 37.43it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[122] Elapsed time 1.337 seconds

INFO:root:Epoch[122] Evaluation metric 'epoch_loss'=4.594424

INFO:root:Epoch[123] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 36.63it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[123] Elapsed time 1.367 seconds

INFO:root:Epoch[123] Evaluation metric 'epoch_loss'=4.597417

INFO:root:Epoch[124] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[124] Elapsed time 1.317 seconds

INFO:root:Epoch[124] Evaluation metric 'epoch_loss'=4.548450

INFO:root:Epoch[125] Learning rate is 0.0005

100%|██████████| 50/50 [00:01<00:00, 35.35it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[125] Elapsed time 1.416 seconds

INFO:root:Epoch[125] Evaluation metric 'epoch_loss'=4.592809

INFO:root:Loading parameters from best epoch (105)

INFO:root:Epoch[126] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 37.00it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[126] Elapsed time 1.352 seconds

INFO:root:Epoch[126] Evaluation metric 'epoch_loss'=4.564122

INFO:root:Epoch[127] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 38.23it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[127] Elapsed time 1.311 seconds

INFO:root:Epoch[127] Evaluation metric 'epoch_loss'=4.564808

INFO:root:Epoch[128] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[128] Elapsed time 1.318 seconds

INFO:root:Epoch[128] Evaluation metric 'epoch_loss'=4.574943

INFO:root:Epoch[129] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 36.69it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[129] Elapsed time 1.364 seconds

INFO:root:Epoch[129] Evaluation metric 'epoch_loss'=4.560503

INFO:root:Epoch[130] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[130] Elapsed time 1.320 seconds

INFO:root:Epoch[130] Evaluation metric 'epoch_loss'=4.624975

INFO:root:Epoch[131] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 38.24it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[131] Elapsed time 1.309 seconds

INFO:root:Epoch[131] Evaluation metric 'epoch_loss'=4.633945

INFO:root:Epoch[132] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 38.28it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[132] Elapsed time 1.307 seconds

INFO:root:Epoch[132] Evaluation metric 'epoch_loss'=4.606106

INFO:root:Epoch[133] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[133] Elapsed time 1.322 seconds

INFO:root:Epoch[133] Evaluation metric 'epoch_loss'=4.537872

INFO:root:Epoch[134] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 36.29it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[134] Elapsed time 1.379 seconds

INFO:root:Epoch[134] Evaluation metric 'epoch_loss'=4.573945

INFO:root:Epoch[135] Learning rate is 0.00025

100%|██████████| 50/50 [00:01<00:00, 37.08it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[135] Elapsed time 1.350 seconds

INFO:root:Epoch[135] Evaluation metric 'epoch_loss'=4.592586

INFO:root:Loading parameters from best epoch (105)

INFO:root:Epoch[136] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[136] Elapsed time 1.317 seconds

INFO:root:Epoch[136] Evaluation metric 'epoch_loss'=4.525768

INFO:root:Epoch[137] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[137] Elapsed time 1.316 seconds

INFO:root:Epoch[137] Evaluation metric 'epoch_loss'=4.553340

INFO:root:Epoch[138] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.20it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[138] Elapsed time 1.310 seconds

INFO:root:Epoch[138] Evaluation metric 'epoch_loss'=4.588766

INFO:root:Epoch[139] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[139] Elapsed time 1.323 seconds

INFO:root:Epoch[139] Evaluation metric 'epoch_loss'=4.593056

INFO:root:Epoch[140] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[140] Elapsed time 1.308 seconds

INFO:root:Epoch[140] Evaluation metric 'epoch_loss'=4.603639

INFO:root:Epoch[141] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[141] Elapsed time 1.319 seconds

INFO:root:Epoch[141] Evaluation metric 'epoch_loss'=4.608594

INFO:root:Epoch[142] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[142] Elapsed time 1.311 seconds

INFO:root:Epoch[142] Evaluation metric 'epoch_loss'=4.609249

INFO:root:Epoch[143] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[143] Elapsed time 1.318 seconds

INFO:root:Epoch[143] Evaluation metric 'epoch_loss'=4.622874

INFO:root:Epoch[144] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 38.28it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[144] Elapsed time 1.307 seconds

INFO:root:Epoch[144] Evaluation metric 'epoch_loss'=4.596835

INFO:root:Epoch[145] Learning rate is 0.000125

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[145] Elapsed time 1.318 seconds

INFO:root:Epoch[145] Evaluation metric 'epoch_loss'=4.603448

INFO:root:Loading parameters from best epoch (105)

INFO:root:Epoch[146] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.41it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[146] Elapsed time 1.303 seconds

INFO:root:Epoch[146] Evaluation metric 'epoch_loss'=4.507017

INFO:root:Epoch[147] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 37.81it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[147] Elapsed time 1.324 seconds

INFO:root:Epoch[147] Evaluation metric 'epoch_loss'=4.529270

INFO:root:Epoch[148] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.16it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[148] Elapsed time 1.311 seconds

INFO:root:Epoch[148] Evaluation metric 'epoch_loss'=4.550545

INFO:root:Epoch[149] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.29it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[149] Elapsed time 1.307 seconds

INFO:root:Epoch[149] Evaluation metric 'epoch_loss'=4.563610

INFO:root:Epoch[150] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[150] Elapsed time 1.317 seconds

INFO:root:Epoch[150] Evaluation metric 'epoch_loss'=4.573600

INFO:root:Epoch[151] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[151] Elapsed time 1.308 seconds

INFO:root:Epoch[151] Evaluation metric 'epoch_loss'=4.584253

INFO:root:Epoch[152] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 37.08it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[152] Elapsed time 1.349 seconds

INFO:root:Epoch[152] Evaluation metric 'epoch_loss'=4.597191

INFO:root:Epoch[153] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 38.35it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[153] Elapsed time 1.305 seconds

INFO:root:Epoch[153] Evaluation metric 'epoch_loss'=4.574356

INFO:root:Epoch[154] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[154] Elapsed time 1.320 seconds

INFO:root:Epoch[154] Evaluation metric 'epoch_loss'=4.573986

INFO:root:Epoch[155] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 37.38it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[155] Elapsed time 1.339 seconds

INFO:root:Epoch[155] Evaluation metric 'epoch_loss'=4.566566

INFO:root:Epoch[156] Learning rate is 6.25e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[156] Elapsed time 1.317 seconds

INFO:root:Epoch[156] Evaluation metric 'epoch_loss'=4.557888

INFO:root:Loading parameters from best epoch (146)

INFO:root:Epoch[157] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.49it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[157] Elapsed time 1.335 seconds

INFO:root:Epoch[157] Evaluation metric 'epoch_loss'=4.541591

INFO:root:Epoch[158] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.54it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[158] Elapsed time 1.298 seconds

INFO:root:Epoch[158] Evaluation metric 'epoch_loss'=4.560204

INFO:root:Epoch[159] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[159] Elapsed time 1.316 seconds

INFO:root:Epoch[159] Evaluation metric 'epoch_loss'=4.575210

INFO:root:Epoch[160] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[160] Elapsed time 1.318 seconds

INFO:root:Epoch[160] Evaluation metric 'epoch_loss'=4.607135

INFO:root:Epoch[161] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[161] Elapsed time 1.322 seconds

INFO:root:Epoch[161] Evaluation metric 'epoch_loss'=4.576488

INFO:root:Epoch[162] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[162] Elapsed time 1.315 seconds

INFO:root:Epoch[162] Evaluation metric 'epoch_loss'=4.572619

INFO:root:Epoch[163] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.16it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[163] Elapsed time 1.312 seconds

INFO:root:Epoch[163] Evaluation metric 'epoch_loss'=4.610960

INFO:root:Epoch[164] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.95it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[164] Elapsed time 1.392 seconds

INFO:root:Epoch[164] Evaluation metric 'epoch_loss'=4.599395

INFO:root:Epoch[165] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.23it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[165] Elapsed time 1.344 seconds

INFO:root:Epoch[165] Evaluation metric 'epoch_loss'=4.602174

INFO:root:Epoch[166] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.14it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[166] Elapsed time 1.312 seconds

INFO:root:Epoch[166] Evaluation metric 'epoch_loss'=4.597454

INFO:root:Epoch[167] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.28it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[167] Elapsed time 1.307 seconds

INFO:root:Epoch[167] Evaluation metric 'epoch_loss'=4.620354

INFO:root:Epoch[168] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.74it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[168] Elapsed time 1.326 seconds

INFO:root:Epoch[168] Evaluation metric 'epoch_loss'=4.607277

INFO:root:Epoch[169] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[169] Elapsed time 1.313 seconds

INFO:root:Epoch[169] Evaluation metric 'epoch_loss'=4.619828

INFO:root:Epoch[170] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[170] Elapsed time 1.315 seconds

INFO:root:Epoch[170] Evaluation metric 'epoch_loss'=4.640945

INFO:root:Epoch[171] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[171] Elapsed time 1.313 seconds

INFO:root:Epoch[171] Evaluation metric 'epoch_loss'=4.641851

INFO:root:Epoch[172] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[172] Elapsed time 1.316 seconds

INFO:root:Epoch[172] Evaluation metric 'epoch_loss'=4.623894

INFO:root:Epoch[173] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.15it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[173] Elapsed time 1.347 seconds

INFO:root:Epoch[173] Evaluation metric 'epoch_loss'=4.627985

INFO:root:Epoch[174] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[174] Elapsed time 1.326 seconds

INFO:root:Epoch[174] Evaluation metric 'epoch_loss'=4.614293

INFO:root:Epoch[175] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[175] Elapsed time 1.318 seconds

INFO:root:Epoch[175] Evaluation metric 'epoch_loss'=4.634464

INFO:root:Epoch[176] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[176] Elapsed time 1.318 seconds

INFO:root:Epoch[176] Evaluation metric 'epoch_loss'=4.606593

INFO:root:Epoch[177] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[177] Elapsed time 1.314 seconds

INFO:root:Epoch[177] Evaluation metric 'epoch_loss'=4.610968

INFO:root:Epoch[178] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.17it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[178] Elapsed time 1.347 seconds

INFO:root:Epoch[178] Evaluation metric 'epoch_loss'=4.595004

INFO:root:Epoch[179] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[179] Elapsed time 1.324 seconds

INFO:root:Epoch[179] Evaluation metric 'epoch_loss'=4.614454

INFO:root:Epoch[180] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.11it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[180] Elapsed time 1.386 seconds

INFO:root:Epoch[180] Evaluation metric 'epoch_loss'=4.598987

INFO:root:Epoch[181] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[181] Elapsed time 1.314 seconds

INFO:root:Epoch[181] Evaluation metric 'epoch_loss'=4.635533

INFO:root:Epoch[182] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.63it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[182] Elapsed time 1.330 seconds

INFO:root:Epoch[182] Evaluation metric 'epoch_loss'=4.633949

INFO:root:Epoch[183] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.81it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[183] Elapsed time 1.323 seconds

INFO:root:Epoch[183] Evaluation metric 'epoch_loss'=4.631888

INFO:root:Epoch[184] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[184] Elapsed time 1.316 seconds

INFO:root:Epoch[184] Evaluation metric 'epoch_loss'=4.604786

INFO:root:Epoch[185] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[185] Elapsed time 1.308 seconds

INFO:root:Epoch[185] Evaluation metric 'epoch_loss'=4.626025

INFO:root:Epoch[186] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.41it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[186] Elapsed time 1.338 seconds

INFO:root:Epoch[186] Evaluation metric 'epoch_loss'=4.640892

INFO:root:Epoch[187] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.99it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[187] Elapsed time 1.353 seconds

INFO:root:Epoch[187] Evaluation metric 'epoch_loss'=4.637912

INFO:root:Epoch[188] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.12it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[188] Elapsed time 1.313 seconds

INFO:root:Epoch[188] Evaluation metric 'epoch_loss'=4.623628

INFO:root:Epoch[189] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[189] Elapsed time 1.310 seconds

INFO:root:Epoch[189] Evaluation metric 'epoch_loss'=4.623069

INFO:root:Epoch[190] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[190] Elapsed time 1.317 seconds

INFO:root:Epoch[190] Evaluation metric 'epoch_loss'=4.628880

INFO:root:Epoch[191] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.43it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[191] Elapsed time 1.337 seconds

INFO:root:Epoch[191] Evaluation metric 'epoch_loss'=4.611961

INFO:root:Epoch[192] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[192] Elapsed time 1.318 seconds

INFO:root:Epoch[192] Evaluation metric 'epoch_loss'=4.629516

INFO:root:Epoch[193] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.43it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[193] Elapsed time 1.337 seconds

INFO:root:Epoch[193] Evaluation metric 'epoch_loss'=4.604615

INFO:root:Epoch[194] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.47it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[194] Elapsed time 1.336 seconds

INFO:root:Epoch[194] Evaluation metric 'epoch_loss'=4.583448

INFO:root:Epoch[195] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.07it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[195] Elapsed time 1.387 seconds

INFO:root:Epoch[195] Evaluation metric 'epoch_loss'=4.602978

INFO:root:Epoch[196] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.19it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[196] Elapsed time 1.345 seconds

INFO:root:Epoch[196] Evaluation metric 'epoch_loss'=4.589526

INFO:root:Epoch[197] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[197] Elapsed time 1.322 seconds

INFO:root:Epoch[197] Evaluation metric 'epoch_loss'=4.600853

INFO:root:Epoch[198] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[198] Elapsed time 1.319 seconds

INFO:root:Epoch[198] Evaluation metric 'epoch_loss'=4.608878

INFO:root:Epoch[199] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.22it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[199] Elapsed time 1.310 seconds

INFO:root:Epoch[199] Evaluation metric 'epoch_loss'=4.592250

INFO:root:Epoch[200] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[200] Elapsed time 1.319 seconds

INFO:root:Epoch[200] Evaluation metric 'epoch_loss'=4.589943

INFO:root:Epoch[201] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[201] Elapsed time 1.314 seconds

INFO:root:Epoch[201] Evaluation metric 'epoch_loss'=4.602462

INFO:root:Epoch[202] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.30it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[202] Elapsed time 1.306 seconds

INFO:root:Epoch[202] Evaluation metric 'epoch_loss'=4.603992

INFO:root:Epoch[203] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[203] Elapsed time 1.315 seconds

INFO:root:Epoch[203] Evaluation metric 'epoch_loss'=4.598712

INFO:root:Epoch[204] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.53it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[204] Elapsed time 1.370 seconds

INFO:root:Epoch[204] Evaluation metric 'epoch_loss'=4.601558

INFO:root:Epoch[205] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.82it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[205] Elapsed time 1.323 seconds

INFO:root:Epoch[205] Evaluation metric 'epoch_loss'=4.588060

INFO:root:Epoch[206] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[206] Elapsed time 1.308 seconds

INFO:root:Epoch[206] Evaluation metric 'epoch_loss'=4.603345

INFO:root:Epoch[207] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.03it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[207] Elapsed time 1.316 seconds

INFO:root:Epoch[207] Evaluation metric 'epoch_loss'=4.579764

INFO:root:Epoch[208] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.28it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[208] Elapsed time 1.307 seconds

INFO:root:Epoch[208] Evaluation metric 'epoch_loss'=4.581412

INFO:root:Epoch[209] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.29it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[209] Elapsed time 1.307 seconds

INFO:root:Epoch[209] Evaluation metric 'epoch_loss'=4.599639

INFO:root:Epoch[210] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[210] Elapsed time 1.318 seconds

INFO:root:Epoch[210] Evaluation metric 'epoch_loss'=4.595175

INFO:root:Epoch[211] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.48it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[211] Elapsed time 1.301 seconds

INFO:root:Epoch[211] Evaluation metric 'epoch_loss'=4.607399

INFO:root:Epoch[212] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.77it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[212] Elapsed time 1.325 seconds

INFO:root:Epoch[212] Evaluation metric 'epoch_loss'=4.601523

INFO:root:Epoch[213] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[213] Elapsed time 1.319 seconds

INFO:root:Epoch[213] Evaluation metric 'epoch_loss'=4.602145

INFO:root:Epoch[214] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.88it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[214] Elapsed time 1.357 seconds

INFO:root:Epoch[214] Evaluation metric 'epoch_loss'=4.606978

INFO:root:Epoch[215] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.54it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[215] Elapsed time 1.333 seconds

INFO:root:Epoch[215] Evaluation metric 'epoch_loss'=4.610485

INFO:root:Epoch[216] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[216] Elapsed time 1.316 seconds

INFO:root:Epoch[216] Evaluation metric 'epoch_loss'=4.621434

INFO:root:Epoch[217] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[217] Elapsed time 1.319 seconds

INFO:root:Epoch[217] Evaluation metric 'epoch_loss'=4.587259

INFO:root:Epoch[218] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.50it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[218] Elapsed time 1.335 seconds

INFO:root:Epoch[218] Evaluation metric 'epoch_loss'=4.604383

INFO:root:Epoch[219] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[219] Elapsed time 1.318 seconds

INFO:root:Epoch[219] Evaluation metric 'epoch_loss'=4.631557

INFO:root:Epoch[220] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.90it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[220] Elapsed time 1.321 seconds

INFO:root:Epoch[220] Evaluation metric 'epoch_loss'=4.624233

INFO:root:Epoch[221] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.73it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[221] Elapsed time 1.326 seconds

INFO:root:Epoch[221] Evaluation metric 'epoch_loss'=4.621551

INFO:root:Epoch[222] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.10it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[222] Elapsed time 1.349 seconds

INFO:root:Epoch[222] Evaluation metric 'epoch_loss'=4.621503

INFO:root:Epoch[223] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.09it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[223] Elapsed time 1.314 seconds

INFO:root:Epoch[223] Evaluation metric 'epoch_loss'=4.627906

INFO:root:Epoch[224] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.13it/s, avg_epoch_loss=4.64]

INFO:root:Epoch[224] Elapsed time 1.385 seconds

INFO:root:Epoch[224] Evaluation metric 'epoch_loss'=4.635194

INFO:root:Epoch[225] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.89it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[225] Elapsed time 1.357 seconds

INFO:root:Epoch[225] Evaluation metric 'epoch_loss'=4.605487

INFO:root:Epoch[226] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.72it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[226] Elapsed time 1.327 seconds

INFO:root:Epoch[226] Evaluation metric 'epoch_loss'=4.606574

INFO:root:Epoch[227] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.04it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[227] Elapsed time 1.389 seconds

INFO:root:Epoch[227] Evaluation metric 'epoch_loss'=4.615854

INFO:root:Epoch[228] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.38it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[228] Elapsed time 1.339 seconds

INFO:root:Epoch[228] Evaluation metric 'epoch_loss'=4.612340

INFO:root:Epoch[229] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.21it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[229] Elapsed time 1.310 seconds

INFO:root:Epoch[229] Evaluation metric 'epoch_loss'=4.593016

INFO:root:Epoch[230] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[230] Elapsed time 1.313 seconds

INFO:root:Epoch[230] Evaluation metric 'epoch_loss'=4.596457

INFO:root:Epoch[231] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[231] Elapsed time 1.324 seconds

INFO:root:Epoch[231] Evaluation metric 'epoch_loss'=4.591155

INFO:root:Epoch[232] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.29it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[232] Elapsed time 1.307 seconds

INFO:root:Epoch[232] Evaluation metric 'epoch_loss'=4.592328

INFO:root:Epoch[233] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[233] Elapsed time 1.313 seconds

INFO:root:Epoch[233] Evaluation metric 'epoch_loss'=4.587908

INFO:root:Epoch[234] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[234] Elapsed time 1.318 seconds

INFO:root:Epoch[234] Evaluation metric 'epoch_loss'=4.572491

INFO:root:Epoch[235] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.12it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[235] Elapsed time 1.313 seconds

INFO:root:Epoch[235] Evaluation metric 'epoch_loss'=4.589817

INFO:root:Epoch[236] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.23it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[236] Elapsed time 1.309 seconds

INFO:root:Epoch[236] Evaluation metric 'epoch_loss'=4.595751

INFO:root:Epoch[237] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[237] Elapsed time 1.326 seconds

INFO:root:Epoch[237] Evaluation metric 'epoch_loss'=4.574610

INFO:root:Epoch[238] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.43it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[238] Elapsed time 1.337 seconds

INFO:root:Epoch[238] Evaluation metric 'epoch_loss'=4.595426

INFO:root:Epoch[239] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.89it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[239] Elapsed time 1.356 seconds

INFO:root:Epoch[239] Evaluation metric 'epoch_loss'=4.570807

INFO:root:Epoch[240] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.13it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[240] Elapsed time 1.312 seconds

INFO:root:Epoch[240] Evaluation metric 'epoch_loss'=4.578699

INFO:root:Epoch[241] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[241] Elapsed time 1.322 seconds

INFO:root:Epoch[241] Evaluation metric 'epoch_loss'=4.555740

INFO:root:Epoch[242] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.78it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[242] Elapsed time 1.324 seconds

INFO:root:Epoch[242] Evaluation metric 'epoch_loss'=4.562517

INFO:root:Epoch[243] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[243] Elapsed time 1.320 seconds

INFO:root:Epoch[243] Evaluation metric 'epoch_loss'=4.542842

INFO:root:Epoch[244] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.53it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[244] Elapsed time 1.334 seconds

INFO:root:Epoch[244] Evaluation metric 'epoch_loss'=4.574745

INFO:root:Epoch[245] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[245] Elapsed time 1.318 seconds

INFO:root:Epoch[245] Evaluation metric 'epoch_loss'=4.588850

INFO:root:Epoch[246] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[246] Elapsed time 1.323 seconds

INFO:root:Epoch[246] Evaluation metric 'epoch_loss'=4.596631

INFO:root:Epoch[247] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.79it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[247] Elapsed time 1.324 seconds

INFO:root:Epoch[247] Evaluation metric 'epoch_loss'=4.607193

INFO:root:Epoch[248] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[248] Elapsed time 1.319 seconds

INFO:root:Epoch[248] Evaluation metric 'epoch_loss'=4.591985

INFO:root:Epoch[249] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[249] Elapsed time 1.318 seconds

INFO:root:Epoch[249] Evaluation metric 'epoch_loss'=4.605927

INFO:root:Epoch[250] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.68it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[250] Elapsed time 1.328 seconds

INFO:root:Epoch[250] Evaluation metric 'epoch_loss'=4.590263

INFO:root:Epoch[251] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.32it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[251] Elapsed time 1.306 seconds

INFO:root:Epoch[251] Evaluation metric 'epoch_loss'=4.573549

INFO:root:Epoch[252] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[252] Elapsed time 1.323 seconds

INFO:root:Epoch[252] Evaluation metric 'epoch_loss'=4.568588

INFO:root:Epoch[253] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[253] Elapsed time 1.316 seconds

INFO:root:Epoch[253] Evaluation metric 'epoch_loss'=4.600277

INFO:root:Epoch[254] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.76it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[254] Elapsed time 1.325 seconds

INFO:root:Epoch[254] Evaluation metric 'epoch_loss'=4.592477

INFO:root:Epoch[255] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.04it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[255] Elapsed time 1.388 seconds

INFO:root:Epoch[255] Evaluation metric 'epoch_loss'=4.627130

INFO:root:Epoch[256] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[256] Elapsed time 1.322 seconds

INFO:root:Epoch[256] Evaluation metric 'epoch_loss'=4.613559

INFO:root:Epoch[257] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.05it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[257] Elapsed time 1.315 seconds

INFO:root:Epoch[257] Evaluation metric 'epoch_loss'=4.618084

INFO:root:Epoch[258] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.23it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[258] Elapsed time 1.309 seconds

INFO:root:Epoch[258] Evaluation metric 'epoch_loss'=4.619146

INFO:root:Epoch[259] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.64it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[259] Elapsed time 1.330 seconds

INFO:root:Epoch[259] Evaluation metric 'epoch_loss'=4.622312

INFO:root:Epoch[260] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.06it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[260] Elapsed time 1.315 seconds

INFO:root:Epoch[260] Evaluation metric 'epoch_loss'=4.608447

INFO:root:Epoch[261] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[261] Elapsed time 1.322 seconds

INFO:root:Epoch[261] Evaluation metric 'epoch_loss'=4.593912

INFO:root:Epoch[262] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.20it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[262] Elapsed time 1.310 seconds

INFO:root:Epoch[262] Evaluation metric 'epoch_loss'=4.583810

INFO:root:Epoch[263] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.17it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[263] Elapsed time 1.311 seconds

INFO:root:Epoch[263] Evaluation metric 'epoch_loss'=4.579088

INFO:root:Epoch[264] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.34it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[264] Elapsed time 1.305 seconds

INFO:root:Epoch[264] Evaluation metric 'epoch_loss'=4.580090

INFO:root:Epoch[265] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[265] Elapsed time 1.319 seconds

INFO:root:Epoch[265] Evaluation metric 'epoch_loss'=4.564237

INFO:root:Epoch[266] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.88it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[266] Elapsed time 1.321 seconds

INFO:root:Epoch[266] Evaluation metric 'epoch_loss'=4.560609

INFO:root:Epoch[267] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.42it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[267] Elapsed time 1.337 seconds

INFO:root:Epoch[267] Evaluation metric 'epoch_loss'=4.581256

INFO:root:Epoch[268] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.62it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[268] Elapsed time 1.405 seconds

INFO:root:Epoch[268] Evaluation metric 'epoch_loss'=4.579469

INFO:root:Epoch[269] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.68it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[269] Elapsed time 1.328 seconds

INFO:root:Epoch[269] Evaluation metric 'epoch_loss'=4.590540

INFO:root:Epoch[270] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.39it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[270] Elapsed time 1.338 seconds

INFO:root:Epoch[270] Evaluation metric 'epoch_loss'=4.601984

INFO:root:Epoch[271] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.65it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[271] Elapsed time 1.295 seconds

INFO:root:Epoch[271] Evaluation metric 'epoch_loss'=4.587665

INFO:root:Epoch[272] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[272] Elapsed time 1.313 seconds

INFO:root:Epoch[272] Evaluation metric 'epoch_loss'=4.590703

INFO:root:Epoch[273] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 34.33it/s, avg_epoch_loss=4.63]

INFO:root:Epoch[273] Elapsed time 1.458 seconds

INFO:root:Epoch[273] Evaluation metric 'epoch_loss'=4.632264

INFO:root:Epoch[274] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.68it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[274] Elapsed time 1.328 seconds

INFO:root:Epoch[274] Evaluation metric 'epoch_loss'=4.612358

INFO:root:Epoch[275] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[275] Elapsed time 1.318 seconds

INFO:root:Epoch[275] Evaluation metric 'epoch_loss'=4.572495

INFO:root:Epoch[276] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.34it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[276] Elapsed time 1.305 seconds

INFO:root:Epoch[276] Evaluation metric 'epoch_loss'=4.568336

INFO:root:Epoch[277] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[277] Elapsed time 1.317 seconds

INFO:root:Epoch[277] Evaluation metric 'epoch_loss'=4.585331

INFO:root:Epoch[278] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[278] Elapsed time 1.320 seconds

INFO:root:Epoch[278] Evaluation metric 'epoch_loss'=4.565863

INFO:root:Epoch[279] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.39it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[279] Elapsed time 1.338 seconds

INFO:root:Epoch[279] Evaluation metric 'epoch_loss'=4.576863

INFO:root:Epoch[280] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.62it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[280] Elapsed time 1.330 seconds

INFO:root:Epoch[280] Evaluation metric 'epoch_loss'=4.589273

INFO:root:Epoch[281] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.52it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[281] Elapsed time 1.334 seconds

INFO:root:Epoch[281] Evaluation metric 'epoch_loss'=4.592349

INFO:root:Epoch[282] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.70it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[282] Elapsed time 1.328 seconds

INFO:root:Epoch[282] Evaluation metric 'epoch_loss'=4.565411

INFO:root:Epoch[283] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[283] Elapsed time 1.317 seconds

INFO:root:Epoch[283] Evaluation metric 'epoch_loss'=4.554517

INFO:root:Epoch[284] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.37it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[284] Elapsed time 1.304 seconds

INFO:root:Epoch[284] Evaluation metric 'epoch_loss'=4.572880

INFO:root:Epoch[285] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.69it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[285] Elapsed time 1.328 seconds

INFO:root:Epoch[285] Evaluation metric 'epoch_loss'=4.603289

INFO:root:Epoch[286] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[286] Elapsed time 1.313 seconds

INFO:root:Epoch[286] Evaluation metric 'epoch_loss'=4.586052

INFO:root:Epoch[287] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.72it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[287] Elapsed time 1.327 seconds

INFO:root:Epoch[287] Evaluation metric 'epoch_loss'=4.573915

INFO:root:Epoch[288] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.24it/s, avg_epoch_loss=4.61]

INFO:root:Epoch[288] Elapsed time 1.344 seconds

INFO:root:Epoch[288] Evaluation metric 'epoch_loss'=4.609423

INFO:root:Epoch[289] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.15it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[289] Elapsed time 1.312 seconds

INFO:root:Epoch[289] Evaluation metric 'epoch_loss'=4.585545

INFO:root:Epoch[290] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.48it/s, avg_epoch_loss=4.62]

INFO:root:Epoch[290] Elapsed time 1.335 seconds

INFO:root:Epoch[290] Evaluation metric 'epoch_loss'=4.618311

INFO:root:Epoch[291] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.20it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[291] Elapsed time 1.310 seconds

INFO:root:Epoch[291] Evaluation metric 'epoch_loss'=4.582074

INFO:root:Epoch[292] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[292] Elapsed time 1.311 seconds

INFO:root:Epoch[292] Evaluation metric 'epoch_loss'=4.584654

INFO:root:Epoch[293] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[293] Elapsed time 1.318 seconds

INFO:root:Epoch[293] Evaluation metric 'epoch_loss'=4.561264

INFO:root:Epoch[294] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[294] Elapsed time 1.319 seconds

INFO:root:Epoch[294] Evaluation metric 'epoch_loss'=4.561681

INFO:root:Epoch[295] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.82it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[295] Elapsed time 1.360 seconds

INFO:root:Epoch[295] Evaluation metric 'epoch_loss'=4.572061

INFO:root:Epoch[296] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.31it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[296] Elapsed time 1.306 seconds

INFO:root:Epoch[296] Evaluation metric 'epoch_loss'=4.556290

INFO:root:Epoch[297] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.21it/s, avg_epoch_loss=4.6]

INFO:root:Epoch[297] Elapsed time 1.310 seconds

INFO:root:Epoch[297] Evaluation metric 'epoch_loss'=4.600985

INFO:root:Epoch[298] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.05it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[298] Elapsed time 1.315 seconds

INFO:root:Epoch[298] Evaluation metric 'epoch_loss'=4.565790

INFO:root:Epoch[299] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.43it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[299] Elapsed time 1.374 seconds

INFO:root:Epoch[299] Evaluation metric 'epoch_loss'=4.583212

INFO:root:Epoch[300] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.73it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[300] Elapsed time 1.326 seconds

INFO:root:Epoch[300] Evaluation metric 'epoch_loss'=4.574852

INFO:root:Epoch[301] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.51it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[301] Elapsed time 1.409 seconds

INFO:root:Epoch[301] Evaluation metric 'epoch_loss'=4.583263

INFO:root:Epoch[302] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.40it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[302] Elapsed time 1.338 seconds

INFO:root:Epoch[302] Evaluation metric 'epoch_loss'=4.570458

INFO:root:Epoch[303] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.55it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[303] Elapsed time 1.333 seconds

INFO:root:Epoch[303] Evaluation metric 'epoch_loss'=4.555145

INFO:root:Epoch[304] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.37it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[304] Elapsed time 1.339 seconds

INFO:root:Epoch[304] Evaluation metric 'epoch_loss'=4.551153

INFO:root:Epoch[305] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.59]

INFO:root:Epoch[305] Elapsed time 1.322 seconds

INFO:root:Epoch[305] Evaluation metric 'epoch_loss'=4.586620

INFO:root:Epoch[306] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.59it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[306] Elapsed time 1.331 seconds

INFO:root:Epoch[306] Evaluation metric 'epoch_loss'=4.557413

INFO:root:Epoch[307] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[307] Elapsed time 1.319 seconds

INFO:root:Epoch[307] Evaluation metric 'epoch_loss'=4.536486

INFO:root:Epoch[308] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[308] Elapsed time 1.319 seconds

INFO:root:Epoch[308] Evaluation metric 'epoch_loss'=4.548560

INFO:root:Epoch[309] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[309] Elapsed time 1.313 seconds

INFO:root:Epoch[309] Evaluation metric 'epoch_loss'=4.545972

INFO:root:Epoch[310] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[310] Elapsed time 1.308 seconds

INFO:root:Epoch[310] Evaluation metric 'epoch_loss'=4.553709

INFO:root:Epoch[311] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.63it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[311] Elapsed time 1.330 seconds

INFO:root:Epoch[311] Evaluation metric 'epoch_loss'=4.568174

INFO:root:Epoch[312] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.58it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[312] Elapsed time 1.332 seconds

INFO:root:Epoch[312] Evaluation metric 'epoch_loss'=4.552575

INFO:root:Epoch[313] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.90it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[313] Elapsed time 1.321 seconds

INFO:root:Epoch[313] Evaluation metric 'epoch_loss'=4.528199

INFO:root:Epoch[314] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.86it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[314] Elapsed time 1.322 seconds

INFO:root:Epoch[314] Evaluation metric 'epoch_loss'=4.534131

INFO:root:Epoch[315] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[315] Elapsed time 1.317 seconds

INFO:root:Epoch[315] Evaluation metric 'epoch_loss'=4.571997

INFO:root:Epoch[316] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[316] Elapsed time 1.318 seconds

INFO:root:Epoch[316] Evaluation metric 'epoch_loss'=4.523712

INFO:root:Epoch[317] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.09it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[317] Elapsed time 1.314 seconds

INFO:root:Epoch[317] Evaluation metric 'epoch_loss'=4.516526

INFO:root:Epoch[318] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[318] Elapsed time 1.317 seconds

INFO:root:Epoch[318] Evaluation metric 'epoch_loss'=4.510386

INFO:root:Epoch[319] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.14it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[319] Elapsed time 1.312 seconds

INFO:root:Epoch[319] Evaluation metric 'epoch_loss'=4.553488

INFO:root:Epoch[320] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.58]

INFO:root:Epoch[320] Elapsed time 1.326 seconds

INFO:root:Epoch[320] Evaluation metric 'epoch_loss'=4.575458

INFO:root:Epoch[321] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[321] Elapsed time 1.308 seconds

INFO:root:Epoch[321] Evaluation metric 'epoch_loss'=4.557679

INFO:root:Epoch[322] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.47it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[322] Elapsed time 1.301 seconds

INFO:root:Epoch[322] Evaluation metric 'epoch_loss'=4.555270

INFO:root:Epoch[323] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.14it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[323] Elapsed time 1.312 seconds

INFO:root:Epoch[323] Evaluation metric 'epoch_loss'=4.568702

INFO:root:Epoch[324] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[324] Elapsed time 1.323 seconds

INFO:root:Epoch[324] Evaluation metric 'epoch_loss'=4.562453

INFO:root:Epoch[325] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[325] Elapsed time 1.314 seconds

INFO:root:Epoch[325] Evaluation metric 'epoch_loss'=4.528500

INFO:root:Epoch[326] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[326] Elapsed time 1.318 seconds

INFO:root:Epoch[326] Evaluation metric 'epoch_loss'=4.499035

INFO:root:Epoch[327] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[327] Elapsed time 1.315 seconds

INFO:root:Epoch[327] Evaluation metric 'epoch_loss'=4.525162

INFO:root:Epoch[328] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[328] Elapsed time 1.324 seconds

INFO:root:Epoch[328] Evaluation metric 'epoch_loss'=4.541240

INFO:root:Epoch[329] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.07it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[329] Elapsed time 1.387 seconds

INFO:root:Epoch[329] Evaluation metric 'epoch_loss'=4.520686

INFO:root:Epoch[330] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.63it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[330] Elapsed time 1.330 seconds

INFO:root:Epoch[330] Evaluation metric 'epoch_loss'=4.520627

INFO:root:Epoch[331] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[331] Elapsed time 1.316 seconds

INFO:root:Epoch[331] Evaluation metric 'epoch_loss'=4.538185

INFO:root:Epoch[332] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.68it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[332] Elapsed time 1.328 seconds

INFO:root:Epoch[332] Evaluation metric 'epoch_loss'=4.536505

INFO:root:Epoch[333] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[333] Elapsed time 1.322 seconds

INFO:root:Epoch[333] Evaluation metric 'epoch_loss'=4.526431

INFO:root:Epoch[334] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.19it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[334] Elapsed time 1.346 seconds

INFO:root:Epoch[334] Evaluation metric 'epoch_loss'=4.558758

INFO:root:Epoch[335] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.09it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[335] Elapsed time 1.426 seconds

INFO:root:Epoch[335] Evaluation metric 'epoch_loss'=4.536412

INFO:root:Epoch[336] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.76it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[336] Elapsed time 1.325 seconds

INFO:root:Epoch[336] Evaluation metric 'epoch_loss'=4.531006

INFO:root:Epoch[337] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[337] Elapsed time 1.318 seconds

INFO:root:Epoch[337] Evaluation metric 'epoch_loss'=4.517650

INFO:root:Epoch[338] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.20it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[338] Elapsed time 1.310 seconds

INFO:root:Epoch[338] Evaluation metric 'epoch_loss'=4.560815

INFO:root:Epoch[339] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.27it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[339] Elapsed time 1.308 seconds

INFO:root:Epoch[339] Evaluation metric 'epoch_loss'=4.549587

INFO:root:Epoch[340] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.53it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[340] Elapsed time 1.333 seconds

INFO:root:Epoch[340] Evaluation metric 'epoch_loss'=4.509896

INFO:root:Epoch[341] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[341] Elapsed time 1.308 seconds

INFO:root:Epoch[341] Evaluation metric 'epoch_loss'=4.512682

INFO:root:Epoch[342] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[342] Elapsed time 1.319 seconds

INFO:root:Epoch[342] Evaluation metric 'epoch_loss'=4.503816

INFO:root:Epoch[343] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[343] Elapsed time 1.308 seconds

INFO:root:Epoch[343] Evaluation metric 'epoch_loss'=4.508218

INFO:root:Epoch[344] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.15it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[344] Elapsed time 1.312 seconds

INFO:root:Epoch[344] Evaluation metric 'epoch_loss'=4.553869

INFO:root:Epoch[345] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[345] Elapsed time 1.319 seconds

INFO:root:Epoch[345] Evaluation metric 'epoch_loss'=4.529615

INFO:root:Epoch[346] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.86it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[346] Elapsed time 1.322 seconds

INFO:root:Epoch[346] Evaluation metric 'epoch_loss'=4.545086

INFO:root:Epoch[347] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.17it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[347] Elapsed time 1.311 seconds

INFO:root:Epoch[347] Evaluation metric 'epoch_loss'=4.573216

INFO:root:Epoch[348] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.70it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[348] Elapsed time 1.327 seconds

INFO:root:Epoch[348] Evaluation metric 'epoch_loss'=4.566226

INFO:root:Epoch[349] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[349] Elapsed time 1.318 seconds

INFO:root:Epoch[349] Evaluation metric 'epoch_loss'=4.541355

INFO:root:Epoch[350] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[350] Elapsed time 1.316 seconds

INFO:root:Epoch[350] Evaluation metric 'epoch_loss'=4.526371

INFO:root:Epoch[351] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[351] Elapsed time 1.317 seconds

INFO:root:Epoch[351] Evaluation metric 'epoch_loss'=4.559385

INFO:root:Epoch[352] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.90it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[352] Elapsed time 1.320 seconds

INFO:root:Epoch[352] Evaluation metric 'epoch_loss'=4.515139

INFO:root:Epoch[353] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[353] Elapsed time 1.313 seconds

INFO:root:Epoch[353] Evaluation metric 'epoch_loss'=4.544017

INFO:root:Epoch[354] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.09it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[354] Elapsed time 1.314 seconds

INFO:root:Epoch[354] Evaluation metric 'epoch_loss'=4.530830

INFO:root:Epoch[355] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.81it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[355] Elapsed time 1.323 seconds

INFO:root:Epoch[355] Evaluation metric 'epoch_loss'=4.529836

INFO:root:Epoch[356] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[356] Elapsed time 1.310 seconds

INFO:root:Epoch[356] Evaluation metric 'epoch_loss'=4.539660

INFO:root:Epoch[357] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.74it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[357] Elapsed time 1.326 seconds

INFO:root:Epoch[357] Evaluation metric 'epoch_loss'=4.573327

INFO:root:Epoch[358] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.25it/s, avg_epoch_loss=4.57]

INFO:root:Epoch[358] Elapsed time 1.308 seconds

INFO:root:Epoch[358] Evaluation metric 'epoch_loss'=4.568004

INFO:root:Epoch[359] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.25it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[359] Elapsed time 1.343 seconds

INFO:root:Epoch[359] Evaluation metric 'epoch_loss'=4.563603

INFO:root:Epoch[360] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.52it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[360] Elapsed time 1.334 seconds

INFO:root:Epoch[360] Evaluation metric 'epoch_loss'=4.534841

INFO:root:Epoch[361] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.66it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[361] Elapsed time 1.329 seconds

INFO:root:Epoch[361] Evaluation metric 'epoch_loss'=4.548719

INFO:root:Epoch[362] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[362] Elapsed time 1.318 seconds

INFO:root:Epoch[362] Evaluation metric 'epoch_loss'=4.493625

INFO:root:Epoch[363] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[363] Elapsed time 1.310 seconds

INFO:root:Epoch[363] Evaluation metric 'epoch_loss'=4.525113

INFO:root:Epoch[364] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.64it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[364] Elapsed time 1.330 seconds

INFO:root:Epoch[364] Evaluation metric 'epoch_loss'=4.540942

INFO:root:Epoch[365] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.13it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[365] Elapsed time 1.314 seconds

INFO:root:Epoch[365] Evaluation metric 'epoch_loss'=4.528698

INFO:root:Epoch[366] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.90it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[366] Elapsed time 1.356 seconds

INFO:root:Epoch[366] Evaluation metric 'epoch_loss'=4.482539

INFO:root:Epoch[367] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[367] Elapsed time 1.323 seconds

INFO:root:Epoch[367] Evaluation metric 'epoch_loss'=4.497527

INFO:root:Epoch[368] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.14it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[368] Elapsed time 1.348 seconds

INFO:root:Epoch[368] Evaluation metric 'epoch_loss'=4.475391

INFO:root:Epoch[369] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[369] Elapsed time 1.314 seconds

INFO:root:Epoch[369] Evaluation metric 'epoch_loss'=4.531226

INFO:root:Epoch[370] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.32it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[370] Elapsed time 1.306 seconds

INFO:root:Epoch[370] Evaluation metric 'epoch_loss'=4.471678

INFO:root:Epoch[371] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.02it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[371] Elapsed time 1.389 seconds

INFO:root:Epoch[371] Evaluation metric 'epoch_loss'=4.543945

INFO:root:Epoch[372] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.73it/s, avg_epoch_loss=4.54]

INFO:root:Epoch[372] Elapsed time 1.326 seconds

INFO:root:Epoch[372] Evaluation metric 'epoch_loss'=4.539869

INFO:root:Epoch[373] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[373] Elapsed time 1.316 seconds

INFO:root:Epoch[373] Evaluation metric 'epoch_loss'=4.506568

INFO:root:Epoch[374] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.50it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[374] Elapsed time 1.335 seconds

INFO:root:Epoch[374] Evaluation metric 'epoch_loss'=4.530681

INFO:root:Epoch[375] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[375] Elapsed time 1.311 seconds

INFO:root:Epoch[375] Evaluation metric 'epoch_loss'=4.502927

INFO:root:Epoch[376] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[376] Elapsed time 1.319 seconds

INFO:root:Epoch[376] Evaluation metric 'epoch_loss'=4.548218

INFO:root:Epoch[377] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.15it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[377] Elapsed time 1.348 seconds

INFO:root:Epoch[377] Evaluation metric 'epoch_loss'=4.465761

INFO:root:Epoch[378] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[378] Elapsed time 1.323 seconds

INFO:root:Epoch[378] Evaluation metric 'epoch_loss'=4.475743

INFO:root:Epoch[379] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.24it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[379] Elapsed time 1.309 seconds

INFO:root:Epoch[379] Evaluation metric 'epoch_loss'=4.478517

INFO:root:Epoch[380] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.19it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[380] Elapsed time 1.346 seconds

INFO:root:Epoch[380] Evaluation metric 'epoch_loss'=4.469277

INFO:root:Epoch[381] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.06it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[381] Elapsed time 1.315 seconds

INFO:root:Epoch[381] Evaluation metric 'epoch_loss'=4.472692

INFO:root:Epoch[382] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[382] Elapsed time 1.319 seconds

INFO:root:Epoch[382] Evaluation metric 'epoch_loss'=4.478586

INFO:root:Epoch[383] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.77it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[383] Elapsed time 1.325 seconds

INFO:root:Epoch[383] Evaluation metric 'epoch_loss'=4.457556

INFO:root:Epoch[384] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[384] Elapsed time 1.318 seconds

INFO:root:Epoch[384] Evaluation metric 'epoch_loss'=4.494260

INFO:root:Epoch[385] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[385] Elapsed time 1.316 seconds

INFO:root:Epoch[385] Evaluation metric 'epoch_loss'=4.533884

INFO:root:Epoch[386] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[386] Elapsed time 1.316 seconds

INFO:root:Epoch[386] Evaluation metric 'epoch_loss'=4.523484

INFO:root:Epoch[387] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.55]

INFO:root:Epoch[387] Elapsed time 1.311 seconds

INFO:root:Epoch[387] Evaluation metric 'epoch_loss'=4.548883

INFO:root:Epoch[388] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.56]

INFO:root:Epoch[388] Elapsed time 1.316 seconds

INFO:root:Epoch[388] Evaluation metric 'epoch_loss'=4.561461

INFO:root:Epoch[389] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.54it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[389] Elapsed time 1.369 seconds

INFO:root:Epoch[389] Evaluation metric 'epoch_loss'=4.533527

INFO:root:Epoch[390] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.13it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[390] Elapsed time 1.312 seconds

INFO:root:Epoch[390] Evaluation metric 'epoch_loss'=4.501721

INFO:root:Epoch[391] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.14it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[391] Elapsed time 1.312 seconds

INFO:root:Epoch[391] Evaluation metric 'epoch_loss'=4.512443

INFO:root:Epoch[392] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.33it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[392] Elapsed time 1.306 seconds

INFO:root:Epoch[392] Evaluation metric 'epoch_loss'=4.491076

INFO:root:Epoch[393] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[393] Elapsed time 1.322 seconds

INFO:root:Epoch[393] Evaluation metric 'epoch_loss'=4.497159

INFO:root:Epoch[394] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[394] Elapsed time 1.318 seconds

INFO:root:Epoch[394] Evaluation metric 'epoch_loss'=4.485411

INFO:root:Epoch[395] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.38it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[395] Elapsed time 1.339 seconds

INFO:root:Epoch[395] Evaluation metric 'epoch_loss'=4.486074

INFO:root:Epoch[396] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.21it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[396] Elapsed time 1.345 seconds

INFO:root:Epoch[396] Evaluation metric 'epoch_loss'=4.481741

INFO:root:Epoch[397] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.92it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[397] Elapsed time 1.393 seconds

INFO:root:Epoch[397] Evaluation metric 'epoch_loss'=4.468943

INFO:root:Epoch[398] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.60it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[398] Elapsed time 1.331 seconds

INFO:root:Epoch[398] Evaluation metric 'epoch_loss'=4.471884

INFO:root:Epoch[399] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.91it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[399] Elapsed time 1.320 seconds

INFO:root:Epoch[399] Evaluation metric 'epoch_loss'=4.459752

INFO:root:Epoch[400] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.88it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[400] Elapsed time 1.321 seconds

INFO:root:Epoch[400] Evaluation metric 'epoch_loss'=4.452388

INFO:root:Epoch[401] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.43it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[401] Elapsed time 1.302 seconds

INFO:root:Epoch[401] Evaluation metric 'epoch_loss'=4.491210

INFO:root:Epoch[402] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[402] Elapsed time 1.313 seconds

INFO:root:Epoch[402] Evaluation metric 'epoch_loss'=4.525929

INFO:root:Epoch[403] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[403] Elapsed time 1.315 seconds

INFO:root:Epoch[403] Evaluation metric 'epoch_loss'=4.504558

INFO:root:Epoch[404] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.70it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[404] Elapsed time 1.364 seconds

INFO:root:Epoch[404] Evaluation metric 'epoch_loss'=4.479427

INFO:root:Epoch[405] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.15it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[405] Elapsed time 1.424 seconds

INFO:root:Epoch[405] Evaluation metric 'epoch_loss'=4.499017

INFO:root:Epoch[406] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[406] Elapsed time 1.314 seconds

INFO:root:Epoch[406] Evaluation metric 'epoch_loss'=4.478531

INFO:root:Epoch[407] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.10it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[407] Elapsed time 1.313 seconds

INFO:root:Epoch[407] Evaluation metric 'epoch_loss'=4.482445

INFO:root:Epoch[408] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.02it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[408] Elapsed time 1.316 seconds

INFO:root:Epoch[408] Evaluation metric 'epoch_loss'=4.464262

INFO:root:Epoch[409] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.33it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[409] Elapsed time 1.416 seconds

INFO:root:Epoch[409] Evaluation metric 'epoch_loss'=4.454847

INFO:root:Epoch[410] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.91it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[410] Elapsed time 1.356 seconds

INFO:root:Epoch[410] Evaluation metric 'epoch_loss'=4.489686

INFO:root:Epoch[411] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.96it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[411] Elapsed time 1.319 seconds

INFO:root:Epoch[411] Evaluation metric 'epoch_loss'=4.508877

INFO:root:Epoch[412] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.38it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[412] Elapsed time 1.339 seconds

INFO:root:Epoch[412] Evaluation metric 'epoch_loss'=4.497672

INFO:root:Epoch[413] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.32it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[413] Elapsed time 1.306 seconds

INFO:root:Epoch[413] Evaluation metric 'epoch_loss'=4.464746

INFO:root:Epoch[414] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.65it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[414] Elapsed time 1.329 seconds

INFO:root:Epoch[414] Evaluation metric 'epoch_loss'=4.524160

INFO:root:Epoch[415] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.90it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[415] Elapsed time 1.320 seconds

INFO:root:Epoch[415] Evaluation metric 'epoch_loss'=4.513638

INFO:root:Epoch[416] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[416] Elapsed time 1.311 seconds

INFO:root:Epoch[416] Evaluation metric 'epoch_loss'=4.470046

INFO:root:Epoch[417] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.90it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[417] Elapsed time 1.320 seconds

INFO:root:Epoch[417] Evaluation metric 'epoch_loss'=4.499333

INFO:root:Epoch[418] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.25it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[418] Elapsed time 1.308 seconds

INFO:root:Epoch[418] Evaluation metric 'epoch_loss'=4.453588

INFO:root:Epoch[419] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.30it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[419] Elapsed time 1.342 seconds

INFO:root:Epoch[419] Evaluation metric 'epoch_loss'=4.507570

INFO:root:Epoch[420] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.07it/s, avg_epoch_loss=4.53]

INFO:root:Epoch[420] Elapsed time 1.350 seconds

INFO:root:Epoch[420] Evaluation metric 'epoch_loss'=4.531122

INFO:root:Epoch[421] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.58it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[421] Elapsed time 1.332 seconds

INFO:root:Epoch[421] Evaluation metric 'epoch_loss'=4.473877

INFO:root:Epoch[422] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[422] Elapsed time 1.308 seconds

INFO:root:Epoch[422] Evaluation metric 'epoch_loss'=4.438277

INFO:root:Epoch[423] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.64it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[423] Elapsed time 1.330 seconds

INFO:root:Epoch[423] Evaluation metric 'epoch_loss'=4.490534

INFO:root:Epoch[424] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.17it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[424] Elapsed time 1.313 seconds

INFO:root:Epoch[424] Evaluation metric 'epoch_loss'=4.469902

INFO:root:Epoch[425] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.87it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[425] Elapsed time 1.323 seconds

INFO:root:Epoch[425] Evaluation metric 'epoch_loss'=4.439598

INFO:root:Epoch[426] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[426] Elapsed time 1.320 seconds

INFO:root:Epoch[426] Evaluation metric 'epoch_loss'=4.454444

INFO:root:Epoch[427] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[427] Elapsed time 1.325 seconds

INFO:root:Epoch[427] Evaluation metric 'epoch_loss'=4.456625

INFO:root:Epoch[428] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.70it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[428] Elapsed time 1.328 seconds

INFO:root:Epoch[428] Evaluation metric 'epoch_loss'=4.456901

INFO:root:Epoch[429] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.50it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[429] Elapsed time 1.410 seconds

INFO:root:Epoch[429] Evaluation metric 'epoch_loss'=4.518988

INFO:root:Epoch[430] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.78it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[430] Elapsed time 1.363 seconds

INFO:root:Epoch[430] Evaluation metric 'epoch_loss'=4.467078

INFO:root:Epoch[431] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.75it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[431] Elapsed time 1.326 seconds

INFO:root:Epoch[431] Evaluation metric 'epoch_loss'=4.496349

INFO:root:Epoch[432] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.64it/s, avg_epoch_loss=4.5]

INFO:root:Epoch[432] Elapsed time 1.330 seconds

INFO:root:Epoch[432] Evaluation metric 'epoch_loss'=4.502493

INFO:root:Epoch[433] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.89it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[433] Elapsed time 1.321 seconds

INFO:root:Epoch[433] Evaluation metric 'epoch_loss'=4.493158

INFO:root:Epoch[434] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[434] Elapsed time 1.317 seconds

INFO:root:Epoch[434] Evaluation metric 'epoch_loss'=4.457325

INFO:root:Epoch[435] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.94it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[435] Elapsed time 1.319 seconds

INFO:root:Epoch[435] Evaluation metric 'epoch_loss'=4.470255

INFO:root:Epoch[436] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.30it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[436] Elapsed time 1.342 seconds

INFO:root:Epoch[436] Evaluation metric 'epoch_loss'=4.479385

INFO:root:Epoch[437] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.19it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[437] Elapsed time 1.383 seconds

INFO:root:Epoch[437] Evaluation metric 'epoch_loss'=4.466019

INFO:root:Epoch[438] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[438] Elapsed time 1.317 seconds

INFO:root:Epoch[438] Evaluation metric 'epoch_loss'=4.436930

INFO:root:Epoch[439] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.93it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[439] Elapsed time 1.319 seconds

INFO:root:Epoch[439] Evaluation metric 'epoch_loss'=4.472014

INFO:root:Epoch[440] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.18it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[440] Elapsed time 1.311 seconds

INFO:root:Epoch[440] Evaluation metric 'epoch_loss'=4.462625

INFO:root:Epoch[441] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[441] Elapsed time 1.316 seconds

INFO:root:Epoch[441] Evaluation metric 'epoch_loss'=4.460309

INFO:root:Epoch[442] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.52it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[442] Elapsed time 1.334 seconds

INFO:root:Epoch[442] Evaluation metric 'epoch_loss'=4.469545

INFO:root:Epoch[443] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.84it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[443] Elapsed time 1.323 seconds

INFO:root:Epoch[443] Evaluation metric 'epoch_loss'=4.473750

INFO:root:Epoch[444] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.10it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[444] Elapsed time 1.349 seconds

INFO:root:Epoch[444] Evaluation metric 'epoch_loss'=4.491657

INFO:root:Epoch[445] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.68it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[445] Elapsed time 1.328 seconds

INFO:root:Epoch[445] Evaluation metric 'epoch_loss'=4.485083

INFO:root:Epoch[446] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.83it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[446] Elapsed time 1.323 seconds

INFO:root:Epoch[446] Evaluation metric 'epoch_loss'=4.477198

INFO:root:Epoch[447] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.79it/s, avg_epoch_loss=4.47]

INFO:root:Epoch[447] Elapsed time 1.324 seconds

INFO:root:Epoch[447] Evaluation metric 'epoch_loss'=4.472365

INFO:root:Epoch[448] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.24it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[448] Elapsed time 1.309 seconds

INFO:root:Epoch[448] Evaluation metric 'epoch_loss'=4.490408

INFO:root:Epoch[449] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.39it/s, avg_epoch_loss=4.43]

INFO:root:Epoch[449] Elapsed time 1.304 seconds

INFO:root:Epoch[449] Evaluation metric 'epoch_loss'=4.432212

INFO:root:Epoch[450] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[450] Elapsed time 1.322 seconds

INFO:root:Epoch[450] Evaluation metric 'epoch_loss'=4.461355

INFO:root:Epoch[451] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[451] Elapsed time 1.319 seconds

INFO:root:Epoch[451] Evaluation metric 'epoch_loss'=4.448371

INFO:root:Epoch[452] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.98it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[452] Elapsed time 1.318 seconds

INFO:root:Epoch[452] Evaluation metric 'epoch_loss'=4.461920

INFO:root:Epoch[453] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[453] Elapsed time 1.310 seconds

INFO:root:Epoch[453] Evaluation metric 'epoch_loss'=4.441264

INFO:root:Epoch[454] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[454] Elapsed time 1.317 seconds

INFO:root:Epoch[454] Evaluation metric 'epoch_loss'=4.444117

INFO:root:Epoch[455] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.07it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[455] Elapsed time 1.315 seconds

INFO:root:Epoch[455] Evaluation metric 'epoch_loss'=4.456934

INFO:root:Epoch[456] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.78it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[456] Elapsed time 1.325 seconds

INFO:root:Epoch[456] Evaluation metric 'epoch_loss'=4.520878

INFO:root:Epoch[457] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.89it/s, avg_epoch_loss=4.51]

INFO:root:Epoch[457] Elapsed time 1.321 seconds

INFO:root:Epoch[457] Evaluation metric 'epoch_loss'=4.508122

INFO:root:Epoch[458] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.59it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[458] Elapsed time 1.331 seconds

INFO:root:Epoch[458] Evaluation metric 'epoch_loss'=4.520416

INFO:root:Epoch[459] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.63it/s, avg_epoch_loss=4.52]

INFO:root:Epoch[459] Elapsed time 1.330 seconds

INFO:root:Epoch[459] Evaluation metric 'epoch_loss'=4.521710

INFO:root:Epoch[460] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.49]

INFO:root:Epoch[460] Elapsed time 1.324 seconds

INFO:root:Epoch[460] Evaluation metric 'epoch_loss'=4.485738

INFO:root:Epoch[461] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.88it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[461] Elapsed time 1.321 seconds

INFO:root:Epoch[461] Evaluation metric 'epoch_loss'=4.444073

INFO:root:Epoch[462] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.92it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[462] Elapsed time 1.319 seconds

INFO:root:Epoch[462] Evaluation metric 'epoch_loss'=4.447255

INFO:root:Epoch[463] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[463] Elapsed time 1.322 seconds

INFO:root:Epoch[463] Evaluation metric 'epoch_loss'=4.459427

INFO:root:Epoch[464] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[464] Elapsed time 1.308 seconds

INFO:root:Epoch[464] Evaluation metric 'epoch_loss'=4.440817

INFO:root:Epoch[465] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.15it/s, avg_epoch_loss=4.48]

INFO:root:Epoch[465] Elapsed time 1.312 seconds

INFO:root:Epoch[465] Evaluation metric 'epoch_loss'=4.476601

INFO:root:Epoch[466] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.12it/s, avg_epoch_loss=4.42]

INFO:root:Epoch[466] Elapsed time 1.313 seconds

INFO:root:Epoch[466] Evaluation metric 'epoch_loss'=4.423774

INFO:root:Epoch[467] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.17it/s, avg_epoch_loss=4.41]

INFO:root:Epoch[467] Elapsed time 1.311 seconds

INFO:root:Epoch[467] Evaluation metric 'epoch_loss'=4.412912

INFO:root:Epoch[468] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[468] Elapsed time 1.316 seconds

INFO:root:Epoch[468] Evaluation metric 'epoch_loss'=4.462471

INFO:root:Epoch[469] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[469] Elapsed time 1.313 seconds

INFO:root:Epoch[469] Evaluation metric 'epoch_loss'=4.440213

INFO:root:Epoch[470] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.08it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[470] Elapsed time 1.314 seconds

INFO:root:Epoch[470] Evaluation metric 'epoch_loss'=4.447691

INFO:root:Epoch[471] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 35.81it/s, avg_epoch_loss=4.43]

INFO:root:Epoch[471] Elapsed time 1.397 seconds

INFO:root:Epoch[471] Evaluation metric 'epoch_loss'=4.432917

INFO:root:Epoch[472] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.50it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[472] Elapsed time 1.334 seconds

INFO:root:Epoch[472] Evaluation metric 'epoch_loss'=4.442975

INFO:root:Epoch[473] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[473] Elapsed time 1.324 seconds

INFO:root:Epoch[473] Evaluation metric 'epoch_loss'=4.456748

INFO:root:Epoch[474] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.28it/s, avg_epoch_loss=4.42]

INFO:root:Epoch[474] Elapsed time 1.307 seconds

INFO:root:Epoch[474] Evaluation metric 'epoch_loss'=4.424139

INFO:root:Epoch[475] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.06it/s, avg_epoch_loss=4.46]

INFO:root:Epoch[475] Elapsed time 1.315 seconds

INFO:root:Epoch[475] Evaluation metric 'epoch_loss'=4.456550

INFO:root:Epoch[476] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.58it/s, avg_epoch_loss=4.37]

INFO:root:Epoch[476] Elapsed time 1.332 seconds

INFO:root:Epoch[476] Evaluation metric 'epoch_loss'=4.372581

INFO:root:Epoch[477] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.80it/s, avg_epoch_loss=4.41]

INFO:root:Epoch[477] Elapsed time 1.324 seconds

INFO:root:Epoch[477] Evaluation metric 'epoch_loss'=4.408890

INFO:root:Epoch[478] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.97it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[478] Elapsed time 1.318 seconds

INFO:root:Epoch[478] Evaluation metric 'epoch_loss'=4.448032

INFO:root:Epoch[479] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.91it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[479] Elapsed time 1.321 seconds

INFO:root:Epoch[479] Evaluation metric 'epoch_loss'=4.453235

INFO:root:Epoch[480] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.59it/s, avg_epoch_loss=4.43]

INFO:root:Epoch[480] Elapsed time 1.331 seconds

INFO:root:Epoch[480] Evaluation metric 'epoch_loss'=4.427158

INFO:root:Epoch[481] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.01it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[481] Elapsed time 1.317 seconds

INFO:root:Epoch[481] Evaluation metric 'epoch_loss'=4.448900

INFO:root:Epoch[482] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.99it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[482] Elapsed time 1.317 seconds

INFO:root:Epoch[482] Evaluation metric 'epoch_loss'=4.438074

INFO:root:Epoch[483] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.04it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[483] Elapsed time 1.316 seconds

INFO:root:Epoch[483] Evaluation metric 'epoch_loss'=4.436242

INFO:root:Epoch[484] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.06it/s, avg_epoch_loss=4.37]

INFO:root:Epoch[484] Elapsed time 1.351 seconds

INFO:root:Epoch[484] Evaluation metric 'epoch_loss'=4.371394

INFO:root:Epoch[485] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.00it/s, avg_epoch_loss=4.42]

INFO:root:Epoch[485] Elapsed time 1.317 seconds

INFO:root:Epoch[485] Evaluation metric 'epoch_loss'=4.418769

INFO:root:Epoch[486] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.38it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[486] Elapsed time 1.376 seconds

INFO:root:Epoch[486] Evaluation metric 'epoch_loss'=4.439901

INFO:root:Epoch[487] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.85it/s, avg_epoch_loss=4.44]

INFO:root:Epoch[487] Elapsed time 1.322 seconds

INFO:root:Epoch[487] Evaluation metric 'epoch_loss'=4.444838

INFO:root:Epoch[488] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.15it/s, avg_epoch_loss=4.45]

INFO:root:Epoch[488] Elapsed time 1.312 seconds

INFO:root:Epoch[488] Evaluation metric 'epoch_loss'=4.453851

INFO:root:Epoch[489] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.72it/s, avg_epoch_loss=4.4]

INFO:root:Epoch[489] Elapsed time 1.327 seconds

INFO:root:Epoch[489] Evaluation metric 'epoch_loss'=4.398688

INFO:root:Epoch[490] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.42it/s, avg_epoch_loss=4.43]

INFO:root:Epoch[490] Elapsed time 1.337 seconds

INFO:root:Epoch[490] Evaluation metric 'epoch_loss'=4.427489

INFO:root:Epoch[491] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.95it/s, avg_epoch_loss=4.38]

INFO:root:Epoch[491] Elapsed time 1.319 seconds

INFO:root:Epoch[491] Evaluation metric 'epoch_loss'=4.383146

INFO:root:Epoch[492] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.11it/s, avg_epoch_loss=4.41]

INFO:root:Epoch[492] Elapsed time 1.313 seconds

INFO:root:Epoch[492] Evaluation metric 'epoch_loss'=4.412924

INFO:root:Epoch[493] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.25it/s, avg_epoch_loss=4.4]

INFO:root:Epoch[493] Elapsed time 1.308 seconds

INFO:root:Epoch[493] Evaluation metric 'epoch_loss'=4.402493

INFO:root:Epoch[494] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.34it/s, avg_epoch_loss=4.42]

INFO:root:Epoch[494] Elapsed time 1.377 seconds

INFO:root:Epoch[494] Evaluation metric 'epoch_loss'=4.415909

INFO:root:Epoch[495] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.70it/s, avg_epoch_loss=4.39]

INFO:root:Epoch[495] Elapsed time 1.327 seconds

INFO:root:Epoch[495] Evaluation metric 'epoch_loss'=4.388255

INFO:root:Epoch[496] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 36.97it/s, avg_epoch_loss=4.36]

INFO:root:Epoch[496] Elapsed time 1.355 seconds

INFO:root:Epoch[496] Evaluation metric 'epoch_loss'=4.356849

INFO:root:Epoch[497] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 37.71it/s, avg_epoch_loss=4.35]

INFO:root:Epoch[497] Elapsed time 1.327 seconds

INFO:root:Epoch[497] Evaluation metric 'epoch_loss'=4.352720

INFO:root:Epoch[498] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.19it/s, avg_epoch_loss=4.35]

INFO:root:Epoch[498] Elapsed time 1.310 seconds

INFO:root:Epoch[498] Evaluation metric 'epoch_loss'=4.349209

INFO:root:Epoch[499] Learning rate is 5e-05

100%|██████████| 50/50 [00:01<00:00, 38.26it/s, avg_epoch_loss=4.35]

INFO:root:Epoch[499] Elapsed time 1.308 seconds

INFO:root:Epoch[499] Evaluation metric 'epoch_loss'=4.347969

INFO:root:Loading parameters from best epoch (499)

INFO:root:Final loss: 4.34796856880188 (occurred at epoch 499)

INFO:root:End model training

In [0]:

# Plotting prediction

plot_forecast(predictor = gluonts_model_predictor, test_data = test_data)

In [0]:

# Predictions with test data

forecast_it, ts_it = make_evaluation_predictions(dataset = test_data,

                                                 predictor = gluonts_model_predictor,

                                                 num_samples = 12)

In [0]:

# Extract metrics

aggregate_metrics, item_metrics = Evaluator()(ts_it, forecast_it, num_series = len(test_data))

Running evaluation: 100%|██████████| 1/1 [00:00<00:00,  7.78it/s]

In [0]:

# Visualize metrics

aggregate_metrics

Out[0]:

{'MSE': 1315580.5833333333,

 'abs_error': 12933.12109375,

 'abs_target_sum': 12933.12109375,

 'abs_target_mean': 1077.7600911458333,

 'seasonal_error': nan,

 'MASE': nan,

 'sMAPE': 2.0,

 'MSIS': nan,

 'QuantileLoss[0.1]': 2586.6242797851564,

 'Coverage[0.1]': 0.0,

 'QuantileLoss[0.2]': 5173.248559570313,

 'Coverage[0.2]': 0.0,

 'QuantileLoss[0.3]': 7759.872839355468,

 'Coverage[0.3]': 0.0,

 'QuantileLoss[0.4]': 10346.497119140626,

 'Coverage[0.4]': 0.0,

 'QuantileLoss[0.5]': 12933.121398925781,

 'Coverage[0.5]': 0.0,

 'QuantileLoss[0.6]': 15519.745678710937,

 'Coverage[0.6]': 0.0,

 'QuantileLoss[0.7]': 18106.369958496092,

 'Coverage[0.7]': 0.0,

 'QuantileLoss[0.8]': 20692.99423828125,

 'Coverage[0.8]': 0.0,

 'QuantileLoss[0.9]': 23279.618518066403,

 'Coverage[0.9]': 0.0,

 'RMSE': 1146.987612545721,

 'NRMSE': 1.0642327749641274,

 'ND': 1.0,

 'wQuantileLoss[0.1]': 0.20000000471929058,

 'wQuantileLoss[0.2]': 0.40000000943858116,

 'wQuantileLoss[0.3]': 0.6000000141578716,

 'wQuantileLoss[0.4]': 0.8000000188771623,

 'wQuantileLoss[0.5]': 1.0000000235964528,

 'wQuantileLoss[0.6]': 1.2000000283157433,

 'wQuantileLoss[0.7]': 1.4000000330350337,

 'wQuantileLoss[0.8]': 1.6000000377543246,

 'wQuantileLoss[0.9]': 1.800000042473615,

 'mean_wQuantileLoss': 1.0000000235964528,

 'MAE_Coverage': 0.5}

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Stacked LSTM:

Differentiated LSTM:

Bidirectional LSTM:

Autoregressive RNN:

Part 6: https://drive.google.com/open?id=16UGQmZQ930c68MGlXynJ0DzFZFbH1L75

Part 5: https://colab.research.google.com/drive/1DJ-RdGu0WEjTorNWnqz5a70HZPARlZx0

Similar to part 4 this notebook won't run on google colab

Simulated Production Deployment

This is a simplified simulated production deployment. The model made with Prophet will be deployed since it had the best performance. The model will be deployed at http://localhost:3000

Loading Packages

In [1]:

# Deactivating the multiple warning messages produced by the newest versions of Pandas and Matplotlib.import sys

import sys

import warnings

import matplotlib.cbook

if not sys.warnoptions:

    warnings.simplefilter("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

warnings.filterwarnings("ignore", category=FutureWarning)

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

 

# Data manipulation imports

import numpy as np

import pandas as pd

import itertools

from pandas import Series

 

# Data visualization imports

import matplotlib.pyplot as plt

import matplotlib as m

import seaborn as sns

import plotly as py

import plotly.express as px

import plotly.graph_objs as go

from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot

 

# Predictive modeling imports

import statsmodels

import statsmodels.api as sm

import statsmodels.tsa.api as smt

import statsmodels.stats as sms

import scipy

import scipy.stats as scs

from statsmodels.graphics import tsaplots

from statsmodels.tsa.seasonal import seasonal_decompose

from statsmodels.tsa.stattools import adfuller

from statsmodels.stats.stattools import jarque_bera

import fbprophet

from fbprophet import Prophet

import holidays

 

# Metrics and performance imports

import math

from math import sqrt

import sklearn

from sklearn.metrics import mean_squared_error

 

# Graphics formatting imports

m.rcParams['axes.labelsize'] = 14

m.rcParams['xtick.labelsize'] = 12

m.rcParams['ytick.labelsize'] = 12

m.rcParams['text.color'] = 'k'

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 15,7

matplotlib.style.use('ggplot')

%matplotlib inline

In [2]:

# Versions of the packages used

%reload_ext watermark

%watermark --iversions

sklearn         0.22.1

matplotlib      3.1.3

plotly          4.6.0

numpy           1.18.1

pandas          1.0.2

scipy           1.4.1

fbprophet       0.6

holidays        0.10.1

seaborn         0.10.0

statsmodels.api 0.11.0

statsmodels     0.11.0

 

Data

The dataset used is available publicly in Tableau's website, and represents the historic sales from the startup in which HappyMoonVC is considering investing.

Dataset source: https://community.tableau.com/docs/DOC-1236

HappyMoonVC wants to analyze and predict all data the in the "technology" category

In [3]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/Matheus-Schmitz/Datasets/master/dataset6.csv')

In [4]:

# Shape

data.shape

Out[4]:

(9994, 21)

In [5]:

# Columns

data.columns

Out[5]:

Index(['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode',

       'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State',

       'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

       'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

      dtype='object')

Exploratory Analysis

In [6]:

# Visualizing data

data.head()

Out[6]:

 

Row ID

Order ID

Order Date

Ship Date

Ship Mode

Customer ID

Customer Name

Segment

Country

City

...

Postal Code

Region

Product ID

Category

Sub-Category

Product Name

Sales

Quantity

Discount

Profit

0

1

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

...

42420

South

FUR-BO-10001798

Furniture

Bookcases

Bush Somerset Collection Bookcase

261.9600

2

0.00

41.9136

1

2

CA-2016-152156

2016-11-08

2016-11-11

Second Class

CG-12520

Claire Gute

Consumer

United States

Henderson

...

42420

South

FUR-CH-10000454

Furniture

Chairs

Hon Deluxe Fabric Upholstered Stacking Chairs,...

731.9400

3

0.00

219.5820

2

3

CA-2016-138688

2016-06-12

2016-06-16

Second Class

DV-13045

Darrin Van Huff

Corporate

United States

Los Angeles

...

90036

West

OFF-LA-10000240

Office Supplies

Labels

Self-Adhesive Address Labels for Typewriters b...

14.6200

2

0.00

6.8714

3

4

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

...

33311

South

FUR-TA-10000577

Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.5775

5

0.45

-383.0310

4

5

US-2015-108966

2015-10-11

2015-10-18

Standard Class

SO-20335

Sean O'Donnell

Consumer

United States

Fort Lauderdale

...

33311

South

OFF-ST-10000760

Office Supplies

Storage

Eldon Fold 'N Roll Cart System

22.3680

2

0.20

2.5164

5 rows × 21 columns

In [7]:

# Statistic summaries

data.describe()

Out[7]:

 

Row ID

Postal Code

Sales

Quantity

Discount

Profit

count

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

9994.000000

mean

4997.500000

55190.379428

229.858001

3.789574

0.156203

28.656896

std

2885.163629

32063.693350

623.245101

2.225110

0.206452

234.260108

min

1.000000

1040.000000

0.444000

1.000000

0.000000

-6599.978000

25%

2499.250000

23223.000000

17.280000

2.000000

0.000000

1.728750

50%

4997.500000

56430.500000

54.490000

3.000000

0.200000

8.666500

75%

7495.750000

90008.000000

209.940000

5.000000

0.200000

29.364000

max

9994.000000

99301.000000

22638.480000

14.000000

0.800000

8399.976000

In [8]:

# Checking for missing values

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9994 entries, 0 to 9993

Data columns (total 21 columns):

 #   Column         Non-Null Count  Dtype 

---  ------         --------------  ----- 

 0   Row ID         9994 non-null   int64 

 1   Order ID       9994 non-null   object

 2   Order Date     9994 non-null   object

 3   Ship Date      9994 non-null   object

 4   Ship Mode      9994 non-null   object

 5   Customer ID    9994 non-null   object

 6   Customer Name  9994 non-null   object

 7   Segment        9994 non-null   object

 8   Country        9994 non-null   object

 9   City           9994 non-null   object

 10  State          9994 non-null   object

 11  Postal Code    9994 non-null   int64 

 12  Region         9994 non-null   object

 13  Product ID     9994 non-null   object

 14  Category       9994 non-null   object

 15  Sub-Category   9994 non-null   object

 16  Product Name   9994 non-null   object

 17  Sales          9994 non-null   float64

 18  Quantity       9994 non-null   int64 

 19  Discount       9994 non-null   float64

 20  Profit         9994 non-null   float64

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

In [9]:

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

In [10]:

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

In [11]:

# Checking

data.columns

Out[11]:

Index(['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode',

       'customer_id', 'customer_name', 'segment', 'country', 'city', 'state',

       'postal_code', 'region', 'product_id', 'category', 'sub_category',

       'product_name', 'sales', 'quantity', 'discount', 'profit'],

      dtype='object')

In [12]:

# Assess the unique values per column (to know whether a variable is categorical or not)

for c in data.columns:

    if len(set(data[c])) < 20:

        print(c,set(data[c]))

ship_mode {'Same Day', 'First Class', 'Second Class', 'Standard Class'}

segment {'Corporate', 'Consumer', 'Home Office'}

country {'United States'}

region {'East', 'West', 'Central', 'South'}

category {'Office Supplies', 'Technology', 'Furniture'}

sub_category {'Envelopes', 'Labels', 'Storage', 'Copiers', 'Accessories', 'Bookcases', 'Art', 'Machines', 'Phones', 'Chairs', 'Appliances', 'Fasteners', 'Tables', 'Paper', 'Supplies', 'Furnishings', 'Binders'}

quantity {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

discount {0.0, 0.8, 0.2, 0.3, 0.45, 0.5, 0.7, 0.6, 0.32, 0.1, 0.4, 0.15}

In [13]:

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

df_furniture = data.loc[data['category'] == 'Furniture']

df_office = data.loc[data['category'] == 'Office Supplies']

Agora vamos preparar as séries temporais.

In [14]:

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

ts_furniture = df_furniture.groupby('order_date')['sales'].sum().reset_index()

ts_office = df_office.groupby('order_date')['sales'].sum().reset_index()

In [15]:

# Checking dataset

ts_technology

Out[15]:

 

order_date

sales

0

2014-01-06

1147.940

1

2014-01-09

31.200

2

2014-01-13

646.740

3

2014-01-15

149.950

4

2014-01-16

124.200

...

...

...

819

2017-12-25

401.208

820

2017-12-27

164.388

821

2017-12-28

14.850

822

2017-12-29

302.376

823

2017-12-30

90.930

824 rows × 2 columns

In [16]:

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

ts_furniture = ts_furniture.set_index('order_date')

ts_office = ts_office.set_index('order_date')

In [17]:

# Visualizing the series

ts_technology

Out[17]:

 

sales

order_date

 

2014-01-06

1147.940

2014-01-09

31.200

2014-01-13

646.740

2014-01-15

149.950

2014-01-16

124.200

...

...

2017-12-25

401.208

2017-12-27

164.388

2017-12-28

14.850

2017-12-29

302.376

2017-12-30

90.930

824 rows × 1 columns

Agora podemos conferir a performance de vendas ao longo do tempo.

In [18]:

# Plotting sales in the technology category

sales_technology = ts_technology[['sales']]

ax = sales_technology.plot(color = 'b', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Technology Category Sales")

plt.show()

In [19]:

# Plotting sales in the furniture category

sales_furniture = ts_furniture[['sales']]

ax = sales_furniture.plot(color = 'g', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Furniture Category Sales")

plt.show()

In [20]:

# Plotting sales in the office category

sales_office = ts_office[['sales']]

ax = sales_office.plot(color = 'r', figsize = (18,6))

plt.xlabel("Data")

plt.ylabel('Sales')

plt.title("Office Category Sales")

plt.show()

In [21]:

# Checking index type

type(sales_technology.index)

Out[21]:

pandas.core.indexes.base.Index

In [22]:

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

sales_furniture.index = pd.to_datetime(sales_furniture.index)

sales_office.index = pd.to_datetime(sales_office.index)

In [23]:

# Checking index type

type(sales_technology.index)

Out[23]:

pandas.core.indexes.datetimes.DatetimeIndex

In [24]:

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

sales_furniture_monthly_mean = sales_furniture['sales'].resample('MS').mean()

sales_office_monthly_mean = sales_office['sales'].resample('MS').mean()

In [25]:

# Verifying the resulting type

type(sales_technology_monthly_mean)

Out[25]:

pandas.core.series.Series

In [26]:

# Checking the data

sales_technology_monthly_mean

Out[26]:

order_date

2014-01-01     449.041429

2014-02-01     229.787143

2014-03-01    2031.948375

2014-04-01     613.028933

2014-05-01     564.698588

2014-06-01     766.905909

2014-07-01     533.608933

2014-08-01     708.435385

2014-09-01    2035.838133

2014-10-01     596.900900

2014-11-01    1208.056320

2014-12-01    1160.732889

2015-01-01     925.070800

2015-02-01     431.121250

2015-03-01     574.662333

2015-04-01     697.559500

2015-05-01     831.642857

2015-06-01     429.024400

2015-07-01     691.397733

2015-08-01    1108.902286

2015-09-01     950.856400

2015-10-01     594.716111

2015-11-01    1037.982652

2015-12-01    1619.637636

2016-01-01     374.671067

2016-02-01    1225.891400

2016-03-01    1135.150105

2016-04-01     875.911882

2016-05-01    1601.816167

2016-06-01    1023.259500

2016-07-01     829.312500

2016-08-01     483.620100

2016-09-01    1144.170300

2016-10-01    1970.835875

2016-11-01    1085.642360

2016-12-01     970.554870

2017-01-01    1195.218071

2017-02-01     430.501714

2017-03-01    1392.859250

2017-04-01     825.559133

2017-05-01     678.329400

2017-06-01     853.055000

2017-07-01    1054.996636

2017-08-01     978.842333

2017-09-01    1077.704120

2017-10-01    1493.439227

2017-11-01    1996.750920

2017-12-01     955.865652

Freq: MS, Name: sales, dtype: float64

In [27]:

# Plotting the monthly mean daily sales of technology products

sales_technology_monthly_mean.plot(figsize = (18, 6), color = 'blue')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Technology: Average Daily Sales per Month")

plt.show()

In [28]:

# Plotting the monthly mean daily sales of furniture products

sales_furniture_monthly_mean.plot(figsize = (18, 6), color = 'green')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Furniture: Average Daily Sales per Month")

plt.show()

In [29]:

# Plotting the monthly mean daily sales of office products

sales_office_monthly_mean.plot(figsize = (20, 6), color = 'red')

plt.xlabel("Purchase Date")

plt.ylabel('Sales')

plt.title("Office: Average Daily Sales per Month")

plt.show()

In [30]:

# Decomposing the time series with the monthly mean daily sales of technology products

decomposition = seasonal_decompose(sales_technology_monthly_mean, freq = 12)

rcParams['figure.figsize'] = 18, 12

 

# Components

trend = decomposition.trend

seasonal = decomposition.seasonal

residual = decomposition.resid

 

# Plot

plt.subplot(411)

plt.plot(sales_technology_monthly_mean, label = 'Original Series')

plt.legend(loc = 'best')

plt.subplot(412)

plt.plot(trend, label = 'Trend')

plt.legend(loc = 'best')

plt.subplot(413)

plt.plot(seasonal, label = 'Seasonality')

plt.legend(loc = 'best')

plt.subplot(414)

plt.plot(residual, label = 'Residuals')

plt.legend(loc = 'best')

plt.tight_layout()

Stationarity test:

In [31]:

# Function to test stationarity

def stationarity_test(serie):

   

    # Calculating moving statistics

    rolmean = serie.rolling(window = 12).mean()

    rolstd = serie.rolling(window = 12).std()

 

    # Plot of moving statistics

    orig = plt.plot(serie, color = 'blue', label = 'Original')

    mean = plt.plot(rolmean, color = 'red', label = 'Moving Average')

    std = plt.plot(rolstd, color = 'black', label = 'Standard Deviation')

    plt.legend(loc = 'best')

    plt.title('Moving Statistics - Mean and Standard Deviation')

    plt.show()

   

    # Dickey-Fuller test:

    # Print

    print('\nDickey-Fuller Test Result:\n')

 

    # Test

    dftest = adfuller(serie, autolag = 'AIC')

 

    # Formatting the output

    df_output = pd.Series(dftest[0:4], index = ['Test Statistic',

                                               'P-value',

                                               'Number of Lags Considered',

                                               'Number of Observations Used'])

 

    # Loop through each item in the test output

    for key, value in dftest[4].items():

        df_output['Critical Value (%s)'%key] = value

 

    # Print

    print (df_output)

   

    # Testing p-value

    print ('\nConclusion:')

    if df_output[1] > 0.05:

        print('\nThe p-value is above 0.05, therefore there are no evidences to reject the null hypothesis.')

        print('This series probably is not stationary.')     

    else:

        print('\nThe p-value is below 0.05, therefore there are evidences to reject the null hypothesis.')

        print('This series probably is stationary.')        

In [32]:

# Verifying if the series is stationary

stationarity_test(sales_technology_monthly_mean)

Dickey-Fuller Test Result:

 

Test Statistic                -7.187969e+00

P-value                        2.547334e-10

Number of Lags Considered      0.000000e+00

Number of Observations Used    4.700000e+01

Critical Value (1%)           -3.577848e+00

Critical Value (5%)           -2.925338e+00

Critical Value (10%)          -2.600774e+00

dtype: float64

 

Conclusion:

 

The p-value is below 0.05, therefore there are evidences to reject the null hypothesis.

This series probably is stationary.

Function to Calculate Accuracy

In [33]:

# Function

def performance(y_true, y_pred):

    mse = ((y_pred - y_true) ** 2).mean()

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    return( print('The prediction MSE is {}'.format(round(mse, 2))+

                  '\nThe prediction RMSE is {}'.format(round(np.sqrt(mse), 2))+

                  '\nThe prediction MAPE is {}'.format(round(mape, 2))))

Prophet Model

Prophet holiday documentation:

https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html

To include holidays and other recurring events into a time series model with Prophet it's necessary to create an additional dataframe to feed the model.

Prophet requires a dataframe with two columns (holiday and ds) and a row for each occurance of the holiday. The dataframe must include all occurances of the holiday, both in the past and in all future dates the model is expected to predict.

It's also possible to include the columns lower_window and upper_window, which extend the holiday to [lower_window, upper_window] days around the date. Essentially a way of indicating extended holidays.

Since this analysis is being conducted on a monthly time series, it doesn't necessarily make sense to include holidays, nevertheless I'm option to include it here as in Prophet's case this variable should not negatively influence the model, plus this could easiy be reverted by emptying the holiday dataframe right before feeding it into the algorithm training process.

Prophet requires that the date column be named 'ds' and the target column be named 'y'

In [34]:

# Load data

data = pd.read_csv('https://raw.githubusercontent.com/dsacademybr/Datasets/master/dataset6.csv')

 

# Setting column names to lowercase

data.columns = map(str.lower, data.columns)

 

# Substituting espaces and dashes in the column names by underscores

data.columns = data.columns.str.replace(" ", "_")

data.columns = data.columns.str.replace("-", "_")

 

# Splitting data by category

df_technology = data.loc[data['category'] == 'Technology']

 

# Aggregating sales by order date

ts_technology = df_technology.groupby('order_date')['sales'].sum().reset_index()

 

# Setting the date as index

ts_technology = ts_technology.set_index('order_date')

 

# Retrieving only sales data

sales_technology = ts_technology[['sales']]

 

# Changing index type

sales_technology.index = pd.to_datetime(sales_technology.index)

 

# Resampling data to a monthly frequency

# Done by setting the month as index and then calculating the mean of daily sales over the month

sales_technology_monthly_mean = sales_technology['sales'].resample('MS').mean()

 

# Train-Test Split

X = sales_technology_monthly_mean

train_size = int(len(X) * 0.75)

trainset, testset = X[0:train_size], X[train_size:]

In [35]:

# Dataframe with holidays

holidays_df = pd.DataFrame([])

for date, name in sorted(holidays.UnitedStates(years=[2014,2015,2016,2017]).items()):

    holidays_df = holidays_df.append(pd.DataFrame({'ds': date, 'holiday': name}, index=[0]), ignore_index=True)

holidays_df['ds'] = pd.to_datetime(holidays_df['ds'], format='%Y-%m-%d', errors='ignore')

In [36]:

# Creating dataframes for train and test data

df_train = pd.DataFrame({'order_date':trainset.index, 'sales':trainset.values})

df_test = pd.DataFrame({'order_date':testset.index, 'sales':testset.values})

In [37]:

# Renaming columns: Prophet requires columns to be names 'ds' and 'y'

df_train = df_train.rename(columns = {'order_date': 'ds', 'sales': 'y'})

df_test = df_test.rename(columns = {'order_date': 'ds', 'sales': 'y'})

In [38]:

# Create a Prophet model with annual seasonalisty and the holidays dataframe

prophet_model = Prophet(yearly_seasonality = True, holidays = holidays_df)

https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html#built-in-country-holidays

Using Prophet's built-in country holiday module, which allows for easy inclusion of holidays into a prophet model for future prediction.

In [39]:

# Adding the built-in Country Holiday method to the model

prophet_model.add_country_holidays(country_name = 'US')

Out[39]:

<fbprophet.forecaster.Prophet at 0x12592a2f2c8>

In [40]:

# Training

prophet_model.fit(df_train)

INFO:numexpr.utils:NumExpr defaulting to 8 threads.

INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.

Out[40]:

<fbprophet.forecaster.Prophet at 0x12592a2f2c8>

In [41]:

# Creating dataframe to fill with predictions

prophet_predictions_df = prophet_model.make_future_dataframe(periods = 12, freq = 'MS')

prophet_predictions_df.count()

Out[41]:

ds    48

dtype: int64

In [42]:

# Forecast

prophet_model_predictions = prophet_model.predict(prophet_predictions_df)

In [43]:

# Checking predictions

prophet_model_predictions[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[43]:

 

ds

yhat

yhat_lower

yhat_upper

43

2017-08-01

790.707493

484.867321

1067.218295

44

2017-09-01

1218.777399

935.403515

1526.101526

45

2017-10-01

1566.094807

1283.662932

1862.724268

46

2017-11-01

1315.903616

1021.928630

1608.573564

47

2017-12-01

1343.235536

1062.583906

1639.685340

In [44]:

# Creating a plot to visualize predictions

 

# Plot predictions

fig = prophet_model.plot(prophet_model_predictions)

 

# Plot actual sales data in red

plt.plot(testset, label = 'Test', color = 'red', linewidth = 2)

plt.show()

In [45]:

# Checking the entire output dataframe

prophet_model_predictions.head()

Out[45]:

 

ds

trend

yhat_lower

yhat_upper

trend_lower

trend_upper

Christmas Day

Christmas Day_lower

Christmas Day_upper

Christmas Day (Observed)

...

holidays

holidays_lower

holidays_upper

yearly

yearly_lower

yearly_upper

multiplicative_terms

multiplicative_terms_lower

multiplicative_terms_upper

yhat

0

2014-01-01

925.615140

426.714320

1023.872644

925.615140

925.615140

0.0

0.0

0.0

0.0

...

-860.551899

-860.551899

-860.551899

657.249847

657.249847

657.249847

0.0

0.0

0.0

722.313088

1

2014-02-01

935.580148

-107.551269

507.486660

935.580148

935.580148

0.0

0.0

0.0

0.0

...

0.000000

0.000000

0.000000

-709.376814

-709.376814

-709.376814

0.0

0.0

0.0

226.203335

2

2014-03-01

944.580801

810.034040

1426.133777

944.580801

944.580801

0.0

0.0

0.0

0.0

...

0.000000

0.000000

0.000000

167.586268

167.586268

167.586268

0.0

0.0

0.0

1112.167068

3

2014-04-01

954.545809

313.827314

916.950991

954.545809

954.545809

0.0

0.0

0.0

0.0

...

0.000000

0.000000

0.000000

-341.771264

-341.771264

-341.771264

0.0

0.0

0.0

612.774545

4

2014-05-01

964.189365

530.791563

1118.642531

964.189365

964.189365

0.0

0.0

0.0

0.0

...

0.000000

0.000000

0.000000

-145.341319

-145.341319

-145.341319

0.0

0.0

0.0

818.848046

5 rows × 61 columns

In [46]:

# Plot

 

# Original series

plt.plot(sales_technology_monthly_mean.index,

         sales_technology_monthly_mean.values,

         label = 'Observed Values',

         color = '#2574BF')

 

# Predictions

plt.plot(sales_technology_monthly_mean[36:48].index,

         prophet_model_predictions[36:48]['yhat'].values,

         label = 'Prophet Model Predictions',

         alpha = 0.7,

         color = 'red')

 

# Confidence intervals

plt.fill_between(sales_technology_monthly_mean[36:48].index,

                 prophet_model_predictions[36:48]['yhat_lower'].values,

                 prophet_model_predictions[36:48]['yhat_upper'].values,

                 color = 'k',

                 alpha = 0.1)

 

plt.title('Forecasting with Prophet Model')

plt.xlabel('Data')

plt.ylabel('Sales')

plt.legend()

plt.show()

Using prophet_model_predictions[36:48] since the goal is to predict only the sales for the months with werent used to train the Prophet model - in the case the year 2017.

In [47]:

# Calculating performance

prophet_results = performance(testset.values, prophet_model_predictions[36:48]['yhat'])

prophet_results

The prediction MSE is 105965.29

The prediction RMSE is 325.52

The prediction MAPE is 26.45

Model comparison:

ARMA (3,1):

ARIMA (6,0,4):

SARIMA (0,0,1)x(1,1,0,12):

SARIMA (1,1,1)x(1,1,0,12):

SARIMAX (1,1,1)x(1,1,0,12):

Prophet:

Deploy to Production

In [48]:

# Using the pickle package to serialize the model and save in the hard drive

import pickle

In [49]:

# Saving in the 'model' folder

with open('model/prophet_model.pckl', 'wb') as fout:

    pickle.dump(prophet_model, fout)

The model will be deployed with the Flask framework.

In [50]:

# Install Flask

# !pip install -q -U flask

In [51]:

# Using flask_cors, to handle CORS (Cross Origin Resource Sharing)

# !pip install -q -U flask_cors

In [52]:

# Imports

import flask

import flask_cors

from flask import Flask, jsonify, request

from flask_cors import CORS, cross_origin

In [53]:

# Versions of the packages used

%reload_ext watermark

%watermark --iversions

sklearn         0.22.1

matplotlib      3.1.3

plotly          4.6.0

numpy           1.18.1

pandas          1.0.2

scipy           1.4.1

fbprophet       0.6

holidays        0.10.1

flask_cors      3.0.8

seaborn         0.10.0

flask           1.1.1

statsmodels.api 0.11.0

statsmodels     0.11.0

 

Checking how the predictions from the trained model are made. First loading the model, then creating a dataframe with the number of periods to forecast, and then filling it. Doing this to check if the model is working properly.

In [54]:

# Loading the model

with open('model/prophet_model.pckl', 'rb') as fin:

    prophet_model_prod = pickle.load(fin)

In [55]:

# Testing the model before deployment

# Creating the predictions dataframe

dataframe_forecast = prophet_model_prod.make_future_dataframe(periods = 60, freq = 'MS')

In [56]:

# Predicting

model_forecast = prophet_model_prod.predict(dataframe_forecast)

In [57]:

# Printing the last predictions

model_forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[57]:

 

ds

yhat

yhat_lower

yhat_upper

91

2021-08-01

1260.348681

964.962672

1553.849069

92

2021-09-01

1688.418587

1402.833170

2004.778531

93

2021-10-01

2035.735996

1726.354399

2339.011576

94

2021-11-01

1785.544805

1497.756984

2067.564820

95

2021-12-01

1812.876724

1525.332339

2124.678723

The prediction procedure works. Time to create the Flask app.

In [58]:

# Imports

import os

import pickle

from pathlib import Path

from flask import Flask, render_template

 

# Instance a Flask app

app = Flask(__name__)

 

# Convert the app to CORS (Cross Origin Ressource Sharing)

CORS(app)

 

# Creating the root (/) which will be shown the the app is opened in a navigator (essentially just showing the index.html page)

 

@app.route("/")

def main_page():

    return render_template("index.html")

 

# When the user accesses the start page it will be requested to insert the number of periods it wishes to forecast.

 

# The index.html page will send (via POST method) the parameter the used typed and will call the forecast page.

# This page executes the forecast function below, which makes the predictions and returns an html table with the results.

 

 

@app.route("/forecast", methods = ['POST'])

   

# Forecast

def forecast():

 

    # Verify if the method is POST

    if request.method == 'POST':

       

        # From the form, colect the value in the horizon variable

        prediction_horizon = int(request.form['horizon'])

       

        # Loading the model

        with open('modelo/modelo_prophet.pckl', 'rb') as fin:

            prophet_model_prod = pickle.load(fin)

   

        # Creating a dataframe with the number of periods requested by the user

        df_app = prophet_model_prod.make_future_dataframe(periods = prediction_horizon, freq = 'MS')

       

        # Predicting

        forecast_app = prophet_model_prod.predict(df_app)

   

        # Storing the predictions on another object, returning only the month and the predicted mean daily sales

        df_app_predictions = forecast_app[['ds', 'yhat']][-prediction_horizon:]

       

        # Saving the html file

        df_app_predictions.to_html('templates/previsoes.html')

        html = df_app_predictions.to_html()

   

    # Return

    return html

In [60]:

# Running the app on http://localhost:3000

if __name__ == "__main__":

    app.run(debug = False, host = '0.0.0.0', port = 3000)

 * Serving Flask app "__main__" (lazy loading)

 * Environment: production

   WARNING: This is a development server. Do not use it in a production deployment.

   Use a production WSGI server instead.

 * Debug mode: off

INFO:werkzeug: * Running on http://0.0.0.0:3000/ (Press CTRL+C to quit)

INFO:werkzeug:127.0.0.1 - - [13/May/2020 20:12:34] "GET / HTTP/1.1" 200 -

ERROR:__main__:Exception on /forecast [POST]

Traceback (most recent call last):

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\app.py", line 2446, in wsgi_app

    response = self.full_dispatch_request()

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\app.py", line 1951, in full_dispatch_request

    rv = self.handle_user_exception(e)

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask_cors\extension.py", line 161, in wrapped_function

    return cors_after_request(app.make_response(f(*args, **kwargs)))

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\app.py", line 1820, in handle_user_exception

    reraise(exc_type, exc_value, tb)

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\_compat.py", line 39, in reraise

    raise value

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\app.py", line 1949, in full_dispatch_request

    rv = self.dispatch_request()

  File "C:\Users\Matheus\Anaconda3\lib\site-packages\flask\app.py", line 1935, in dispatch_request

    return self.view_functions[rule.endpoint](**req.view_args)

  File "<ipython-input-58-4505a33b6204>", line 34, in forecast

    prediction_horizon = int(request.form['horizon'])

ValueError: invalid literal for int() with base 10: 'a'

INFO:werkzeug:127.0.0.1 - - [13/May/2020 20:12:37] "POST /forecast HTTP/1.1" 500 -

While the cell above is running the model will be available at: http://localhost:3000

All the user needs to do is insert a number and the model will predict that many months ahead. There is no error treatment.